File size: 64,939 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import annotations

import copy
import inspect
import json
import os
import random
import tempfile
import unittest
from importlib import import_module
from math import isnan

from datasets import Dataset

from transformers import is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import (
    CaptureLogger,
    require_tf,
    require_tf2onnx,
    slow,
)
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging
from transformers.utils.generic import ModelOutput


logger = logging.get_logger(__name__)


if is_tf_available():
    import numpy as np
    import tensorflow as tf

    from transformers import (
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
        TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
        TF_MODEL_FOR_PRETRAINING_MAPPING,
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        TFAutoModel,
        TFAutoModelForSequenceClassification,
        TFSharedEmbeddings,
    )
    from transformers.modeling_tf_utils import keras

    tf.config.experimental.enable_tensor_float_32_execution(False)


def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key:
            setattr(configs_no_init, key, 0.0)
    return configs_no_init


@require_tf
class TFModelTesterMixin:
    model_tester = None
    all_model_classes = ()
    all_generative_model_classes = ()
    test_mismatched_shapes = True
    test_resize_embeddings = True
    test_head_masking = True
    is_encoder_decoder = False
    has_attentions = True

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
        inputs_dict = copy.deepcopy(inputs_dict)

        if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
            inputs_dict = {
                k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
                if isinstance(v, tf.Tensor) and v.ndim > 0
                else v
                for k, v in inputs_dict.items()
            }

        if return_labels:
            if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
                inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in [
                *get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING),
                *get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
            ]:
                inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
                inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in [
                *get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
                inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
                inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
            elif model_class in [
                *get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
                *get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
                *get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING),
            ] and "labels" in dict(inspect.signature(model_class.call).parameters):
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )
            elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = tf.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=tf.int32
                )
            elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32)
            elif model_class.__name__.endswith("ForCTC"):
                # When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks
                inputs_dict["labels"] = tf.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
                )

        return inputs_dict

    def test_initialization(self):
        pass

    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=False)

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

                model = model_class.from_pretrained(tmpdirname)
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))

                self.assert_outputs_same(after_outputs, outputs)

    def test_save_load_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            model_config = model.get_config()
            # make sure that returned config is jsonifiable, which is required by keras
            json.dumps(model_config)
            new_model = model_class.from_config(model.get_config())
            # make sure it also accepts a normal config
            _ = model_class.from_config(model.config)
            _ = new_model(self._prepare_for_class(inputs_dict, model_class))  # Build model
            new_model.set_weights(model.get_weights())
            after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class))

            self.assert_outputs_same(after_outputs, outputs)

    @slow
    def test_saved_model_creation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = False
        config.output_attentions = False

        if hasattr(config, "use_cache"):
            config.use_cache = False

        model_class = self.all_model_classes[0]

        class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
        model = model_class(config)

        model(class_inputs_dict)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, saved_model=True)
            saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
            self.assertTrue(os.path.exists(saved_model_dir))

    def test_prepare_serving_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(inputs)
            serving_outputs = model.serving_output(outputs)

            for k, v in serving_outputs.items():
                # Check that we have one of three possible outputs: None, tuple of tensors or a tensor
                if isinstance(v, tuple):
                    self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v))
                elif v is not None:
                    self.assertIsInstance(v, tf.Tensor)
                else:
                    self.assertIsNone(v)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
                expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else [])
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
                )
                expected_arg_names.extend(
                    ["cross_attn_head_mask", "encoder_outputs"]
                    if "cross_attn_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_onnx_compliancy(self):
        if not self.test_onnx:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        INTERNAL_OPS = [
            "Assert",
            "AssignVariableOp",
            "EmptyTensorList",
            "ReadVariableOp",
            "ResourceGather",
            "TruncatedNormal",
            "VarHandleOp",
            "VarIsInitializedOp",
        ]
        onnx_ops = []

        with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f:
            onnx_opsets = json.load(f)["opsets"]

        for i in range(1, self.onnx_min_opset + 1):
            onnx_ops.extend(onnx_opsets[str(i)])

        for model_class in self.all_model_classes:
            model_op_names = set()

            with tf.Graph().as_default() as g:
                model = model_class(config)
                model.build_in_name_scope()

                for op in g.get_operations():
                    model_op_names.add(op.node_def.op)

            model_op_names = sorted(model_op_names)
            incompatible_ops = []

            for op in model_op_names:
                if op not in onnx_ops and op not in INTERNAL_OPS:
                    incompatible_ops.append(op)

            self.assertEqual(len(incompatible_ops), 0, incompatible_ops)

    # `tf2onnx` issue page: https://github.com/onnx/tensorflow-onnx/issues/2172
    # TODO: undo skip once a fix is done in `tf2onnx`
    @unittest.skip("`tf2onnx` broke with TF 2.13")
    @require_tf2onnx
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
        import tf2onnx

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes[:2]:
            model = model_class(config)
            model.build_in_name_scope()

            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)

            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())

    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        tf_main_layer_classes = {
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        }
        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
                config.use_cache = inputs_dict.pop("use_cache", None)
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: keras.Input(tensor.shape[1:], dtype=tensor.dtype)
                for name, tensor in inputs_dict.items()
                if tf.is_tensor(tensor)
            }

            model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    def assert_outputs_same(self, after_outputs, outputs):
        # Make sure we don't have nans
        if isinstance(after_outputs, tf.Tensor):
            out_1 = after_outputs.numpy()
        elif isinstance(after_outputs, dict):
            out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
        else:
            out_1 = after_outputs[0].numpy()
        out_2 = outputs[0].numpy()
        self.assertEqual(out_1.shape, out_2.shape)
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""

        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]

                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = tf.concat(
                    [tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
                )

                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = tf.concat(
                #     [
                #         tf.zeros_like(attention_mask[:1], dtype=tf.int32),
                #         tf.cast(attention_mask[1:], dtype=tf.int32)
                #     ],
                #     axis=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "TFFlaubertWithLMHeadModel",
            "TFFunnelForPreTraining",
            "TFElectraForPreTraining",
            "TFXLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("TFGPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    @slow
    def test_compile_tf_model(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes[:2]:
            # Prepare our model
            model = model_class(config)
            # These are maximally general inputs for the model, with multiple None dimensions
            # Hopefully this will catch any conditionals that fail for flexible shapes
            functional_inputs = {
                key: keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key)
                for key, val in model.input_signature.items()
                if key in model.dummy_inputs
            }
            outputs_dict = model(functional_inputs)

            hidden_states = outputs_dict[0]

            # Compile extended model
            functional_model = keras.Model(inputs=functional_inputs, outputs=hidden_states)
            model_out = functional_model.predict(model.dummy_inputs)  # Check we can pass inputs with the Keras API
            self.assertTrue(model_out is not None)
            with tempfile.TemporaryDirectory() as tmpdirname:
                functional_model.save(tmpdirname)  # Ensure we can save/export the whole functional model

    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)

            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            outputs_keywords = model(**inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_attention_outputs(self):
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(min(out_len % 2, out_len % 5), 0)  # differentiation due to newly added cross_attentions
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            out_len = len(outputs)
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            if self.is_encoder_decoder:
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)

            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
            check_encoder_attentions_output(outputs)

    def test_headmasking(self):
        if not self.test_head_masking:
            return

        random.Random().seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        random.Random().seed()

        inputs_dict["output_attentions"] = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)

            # Prepare head_mask
            def prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
                if i == 0:
                    return tf.concat(
                        (tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0
                    )
                elif i == num_hidden_layers - 1:
                    return tf.concat(
                        (tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0
                    )
                else:
                    return tf.ones(attention_heads, dtype=tf.float32)

            head_mask = tf.stack(
                [
                    prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ],
                0,
            )

            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            inputs["head_mask"] = head_mask
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.call)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary differentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask

            outputs = model(**inputs, return_dict=True)

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        (tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy()
                    )  # Check we don't have more than 25% nans (arbitrary)

                attentions = [
                    tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0)
                self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0)
                self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
                if "cross_attn_head_mask" in arg_names:
                    check_attentions_validity(outputs.cross_attentions)
            else:
                check_attentions_validity(outputs.attentions)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )

            if model.config.is_encoder_decoder:
                encoder_hidden_states = outputs.encoder_hidden_states
                decoder_hidden_states = outputs.decoder_hidden_states

                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(encoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(encoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
                self.assertEqual(len(decoder_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(decoder_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )
            else:
                hidden_states = outputs.hidden_states
                self.assertEqual(config.output_attentions, False)
                self.assertEqual(len(hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        text_in_text_out_models = (
            get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING)
            + get_values(TF_MODEL_FOR_MASKED_LM_MAPPING)
            + get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING)
        )
        speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING)

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), keras.layers.Layer)

            legacy_text_in_text_out = model.get_lm_head() is not None
            if model_class in text_in_text_out_models or legacy_text_in_text_out:
                out_embeddings = model.get_output_embeddings()
                self.assertIsInstance(out_embeddings, keras.layers.Layer)
                bias = model.get_bias()
                if bias is not None:
                    self.assertIsInstance(bias, dict)
                    for _, v in bias.items():
                        self.assertIsInstance(v, tf.Variable)
            elif model_class in speech_in_text_out_models:
                out_embeddings = model.get_output_embeddings()
                self.assertIsInstance(out_embeddings, keras.layers.Layer)
                bias = model.get_bias()
                self.assertIsNone(bias)
            else:
                out_embeddings = model.get_output_embeddings()
                assert out_embeddings is None
                bias = model.get_bias()
                self.assertIsNone(bias)

    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            first, second = (
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
                model(self._prepare_for_class(inputs_dict, model_class), training=False)[0],
            )
            out_1 = first.numpy()
            out_2 = second.numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (list, tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assertTrue(
                        all(tf.equal(tuple_object, dict_object)),
                        msg=(
                            "Tuple and dict output are not equal. Difference:"
                            f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
                        ),
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            # Not all models accept "labels" in the forward pass (yet :) )
            if "labels" in inspect.signature(model.call).parameters.keys():
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs)

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

                if self.has_attentions:
                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                    tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                    check_equivalence(
                        model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                    )

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = copy.deepcopy(inputs_dict)

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids)
            else:
                inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids)

            inputs = self._prepare_for_class(inputs, model_class)

            model(inputs)

    def test_numpy_arrays_inputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def prepare_numpy_arrays(inputs_dict):
            inputs_np_dict = {}
            for k, v in inputs_dict.items():
                if tf.is_tensor(v):
                    inputs_np_dict[k] = v.numpy()
                else:
                    inputs_np_dict[k] = np.array(k)

            return inputs_np_dict

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs = self._prepare_for_class(inputs_dict, model_class)
            inputs_np = prepare_numpy_arrays(inputs)

            output_for_dict_input = model(inputs_np)
            output_for_kw_input = model(**inputs_np)
            self.assert_outputs_same(output_for_dict_input, output_for_kw_input)

    def test_valid_input_signature_and_dummies(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            call_args = inspect.signature(model.call).parameters
            for key in model.input_signature:
                self.assertIn(key, call_args)
            for key in model.dummy_inputs:
                self.assertIn(key, call_args)

    def test_resize_token_embeddings(self):
        # TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on
        # keras.layers.Embedding

        if not self.test_resize_embeddings:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if isinstance(embedding_layer, keras.layers.Embedding):
                # builds the embeddings layer
                model.build_in_name_scope()
                return embedding_layer.embeddings
            else:
                return model._get_word_embedding_weight(embedding_layer)

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_bias = model.get_bias()
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_bias = model.get_bias()
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size
                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_bias is not None and new_bias is not None:
                    for old_weight, new_weight in zip(old_bias.values(), new_bias.values()):
                        self.assertEqual(new_weight.shape[-1], assert_size)

                        models_equal = True
                        for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                        self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)
                    self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1])

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

    # TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs,
    # while passing push CI. Fix the underlying issues and remove the tag.
    @slow
    def test_save_load_after_resize_token_embeddings(self):
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # create a model with resized (expended) embeddings
            new_tokens_size = 10
            old_total_size = config.vocab_size
            new_total_size = old_total_size + new_tokens_size
            model = model_class(config=copy.deepcopy(config))  # `resize_token_embeddings` mutates `config`
            model.build_in_name_scope()
            model.resize_token_embeddings(new_total_size)

            # fetch the output for an input exclusively made of new members of the vocabulary
            inputs_dict = copy.deepcopy(original_inputs_dict)
            ids_feat_name = None
            if "input_ids" in inputs_dict:
                ids_feat_name = "input_ids"
            elif "decoder_input_ids" in inputs_dict:
                ids_feat_name = "decoder_input_ids"
            else:
                assert False, "No input ids feature found in the inputs dict"

            new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size)
            new_vocab_input_ids += old_total_size
            inputs_dict[ids_feat_name] = new_vocab_input_ids
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = new_vocab_input_ids
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = new_vocab_input_ids
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            outputs = model(**prepared_inputs)

            # save and load the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=False)
                model = model_class.from_pretrained(tmpdirname)
                restored_model_outputs = model(**prepared_inputs)

                # check that the output for the restored model is the same
                self.assert_outputs_same(restored_model_outputs, outputs)

    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
        reason="This test always passes on CPU.",
    )
    def test_embeddings_out_of_bounds_raise_exception(self):
        # TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it.
        # This test should only fail on GPU for models where we haven't added the safety check.
        if not self.test_resize_embeddings:
            return
        config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            inputs_dict = copy.deepcopy(original_inputs_dict)
            if "input_ids" in inputs_dict:
                inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9)
            prepared_inputs = self._prepare_for_class(inputs_dict, model_class)
            with self.assertRaises(tf.errors.InvalidArgumentError):
                model(**prepared_inputs)

    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            # The number of elements in the loss should be the same as the number of elements in the label
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)
            if not added_label_names:
                continue  # This test is only for models with easily-separable labels
            added_label = prepared_for_class[added_label_names[0]]
            expected_loss_size = added_label.shape.as_list()[:1]

            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)

            outputs = model(model_input, **prepared_for_class)
            if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"):
                continue

            loss = outputs.loss
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss when we mask some positions
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"}
            input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
            model_input = prepared_for_class.pop(input_name)
            if "labels" in prepared_for_class:
                labels = prepared_for_class["labels"].numpy()
                if len(labels.shape) > 1 and labels.shape[1] != 1:
                    labels[0] = -100
                    prepared_for_class["labels"] = tf.convert_to_tensor(labels)
                    loss = model(model_input, **prepared_for_class)[0]
                    self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
                    self.assertTrue(not np.any(np.isnan(loss.numpy())))

            # Test that model correctly compute the loss with a dict
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            loss = model(prepared_for_class)[0]
            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

            # Test that model correctly compute the loss with a tuple
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

            # Get keys that were added with the _prepare_for_class function
            label_keys = prepared_for_class.keys() - inputs_dict.keys()
            signature = inspect.signature(model.call).parameters
            signature_names = list(signature.keys())

            # Create a dictionary holding the location of the tensors in the tuple
            tuple_index_mapping = {0: input_name}
            for label_key in label_keys:
                label_key_index = signature_names.index(label_key)
                tuple_index_mapping[label_key_index] = label_key
            sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
            # Initialize a list with their default values, update the values and convert to a tuple
            list_input = []

            for name in signature_names:
                if name != "kwargs":
                    list_input.append(signature[name].default)

            for index, value in sorted_tuple_index_mapping:
                list_input[index] = prepared_for_class[value]

            tuple_input = tuple(list_input)

            # Send to model
            loss = model(tuple_input[:-1])[0]

            self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])

    def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3):
        self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))

    @slow
    def test_keras_fit(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            # Test that model correctly compute the loss with kwargs
            prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
            # We also remove "return_loss" as this is covered by the train_step when using fit()
            prepared_for_class = {
                key: val
                for key, val in prepared_for_class.items()
                if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss")
            }
            if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class:
                del prepared_for_class["decoder_input_ids"]

            accuracy_classes = [
                "ForPreTraining",
                "ForCausalLM",
                "ForMaskedLM",
                "ForQuestionAnswering",
                "ForMultipleChoice",
                "ForSequenceClassification",
                "ForTokenClassification",
                "ForNextSentencePrediction",
                "LMHeadModel",
            ]
            for accuracy_class in accuracy_classes:
                if model.__class__.__name__.endswith(accuracy_class):
                    metrics = [keras.metrics.SparseCategoricalAccuracy()]
                    break
            else:
                metrics = []

            if hasattr(self.model_tester, "batch_size"):
                sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32)
            else:
                sample_weight = None
            # Build the model so we can get some constant weights and check outputs
            outputs = model(prepared_for_class)
            if getattr(outputs, "loss", None) is None:
                continue
            model_weights = model.get_weights()

            # Run eagerly to save some expensive compilation times
            model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics)
            # Make sure the model fits without crashing regardless of where we pass the labels
            history1 = model.fit(
                prepared_for_class,
                validation_data=prepared_for_class,
                sample_weight=sample_weight,
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss1 = history1.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss1))
            accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")}

            possible_label_cols = {
                "labels",
                "label",
                "label_ids",
                "start_positions",
                "start_position",
                "end_positions",
                "end_position",
                "next_sentence_label",
            }
            label_names = possible_label_cols.intersection(set(prepared_for_class))
            if len(label_names) == 0:
                # The next tests only make sense for models with separate inputs and labels, and do not make
                # sense for models that don't clearly distinguish between the two (e.g. CLIP)
                return
            labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
            inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names}
            self.assertGreater(len(inputs_minus_labels), 0)

            # We reinitialize the model here even though our learning rate was zero
            # because BatchNorm updates weights by means other than gradient descent.
            model.set_weights(model_weights)

            history2 = model.fit(
                inputs_minus_labels,
                labels,
                validation_data=(inputs_minus_labels, labels),
                sample_weight=sample_weight,
                steps_per_epoch=1,
                validation_steps=1,
                shuffle=False,
            )
            val_loss2 = history2.history["val_loss"][0]
            self.assertTrue(not isnan(val_loss2))
            accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")}
            self.check_keras_fit_results(val_loss1, val_loss2)
            self.assertEqual(history1.history.keys(), history2.history.keys())
            for key in history1.history.keys():
                if not key.startswith("val_"):
                    self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!")
            if metrics:
                self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!")

    def test_int_support(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            prepared_for_class = self._prepare_for_class(
                inputs_dict.copy(),
                model_class,
                return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False,
            )
            if not any(
                tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor)
            ):
                return  # No integer inputs means no need for this test

            prepared_for_class = {
                key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model = model_class(config)
            model(**prepared_for_class)  # No assertion, we're just checking this doesn't throw an error
            int32_prepared_for_class = {
                key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor
                for key, tensor in prepared_for_class.items()
            }
            model(**int32_prepared_for_class)  # No assertion, we're just checking this doesn't throw an error

            # After testing that the model accepts all int inputs, confirm that its dummies are int32
            for key, tensor in model.dummy_inputs.items():
                self.assertTrue(
                    isinstance(tensor, tf.Tensor) or keras.backend.is_keras_tensor(tensor),
                    "Dummy inputs should be tf.Tensor!",
                )
                if tensor.dtype.is_integer:
                    self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!")

            # Also confirm that the input_signature uses int32
            for key, tensor_spec in model.input_signature.items():
                if tensor_spec.dtype.is_integer:
                    self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!")

    def test_load_with_mismatched_shapes(self):
        if not self.test_mismatched_shapes:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    _ = model(**inputs)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10)

                    logger = logging.get_logger("transformers.modeling_tf_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = TFAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = TFAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    # Although Tf models always have a prefix pointing to `MainLayer`,
                    # we still add this "without prefix" test to keep a consistency between tf and pt tests.
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "call"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

    def test_dataset_conversion(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False)
            if "labels" in tf_inputs_dict:
                return  # This is some kinda funky decoder model that needs labels in its forward pass
            tf_inputs_dict = {
                key: val
                for key, val in tf_inputs_dict.items()
                if "head_mask" not in key and isinstance(val, tf.Tensor)
            }
            tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
            input_dataset = Dataset.from_dict(tf_inputs_dict)
            tf_dataset = model.prepare_tf_dataset(
                input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
            )
            test_batch = next(iter(tf_dataset))
            if isinstance(test_batch, tf.Tensor):
                self.assertEqual(len(test_batch), len(input_dataset))  # Assert we didn't lose any data
            elif isinstance(test_batch, dict):
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(len(test_batch), len(input_dataset.features) - 1)
                self.assertNotIn("extra_unwanted_column", test_batch)
                for tensor in test_batch.values():
                    self.assertTrue(isinstance(tensor, tf.Tensor))
                    self.assertEqual(len(tensor), len(input_dataset))  # Assert we didn't lose any data
            model(test_batch, training=False)

            if "labels" in inspect.signature(model_class.call).parameters.keys():
                tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                if "labels" not in tf_inputs_dict:
                    return  # This model isn't giving us labels after all, don't try training with it
                tf_inputs_dict = {
                    key: val
                    for key, val in tf_inputs_dict.items()
                    if "head_mask" not in key and isinstance(val, tf.Tensor)
                }
                tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0]  # Use a random other tensor
                input_dataset = Dataset.from_dict(tf_inputs_dict)
                tf_dataset = model.prepare_tf_dataset(
                    input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False
                )
                test_batch, test_batch_labels = next(iter(tf_dataset))
                self.assertGreater(len(test_batch_labels), 0)  # Assert the labels are present
                feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch)
                label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels)
                # Assert we discarded the unwanted extra column but kept everything else
                self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1)
                if isinstance(test_batch, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch)
                if isinstance(test_batch_labels, dict):
                    self.assertNotIn("extra_unwanted_column", test_batch_labels)
                model.compile(optimizer="sgd", run_eagerly=True)
                model.train_on_batch(test_batch, test_batch_labels)


def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)

    return output


def random_attention_mask(shape, rng=None, name=None, dtype=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype)
    # Mark the first token as 1 (matches behaviour of PyTorch/Flax function)
    attn_mask = tf.concat([tf.ones_like(attn_mask[:, :1]), attn_mask[:, 1:]], axis=1)
    return attn_mask


def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape)