File size: 7,175 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, VptqConfig
from transformers.testing_utils import (
    backend_empty_cache,
    require_accelerate,
    require_torch_gpu,
    require_torch_multi_gpu,
    require_vptq,
    slow,
    torch_device,
)
from transformers.utils import is_accelerate_available, is_torch_available


if is_torch_available():
    import torch

if is_accelerate_available():
    from accelerate import init_empty_weights


class VptqConfigTest(unittest.TestCase):
    def test_to_dict(self):
        """
        Makes sure the config format is properly set
        """
        quantization_config = VptqConfig()
        vptq_orig_config = quantization_config.to_dict()

        self.assertEqual(vptq_orig_config["quant_method"], quantization_config.quant_method)


@slow
@require_torch_gpu
@require_vptq
@require_accelerate
class VptqTest(unittest.TestCase):
    model_name = "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v12-k65536-4096-woft"

    input_text = "Hello my name is"
    max_new_tokens = 32

    EXPECTED_OUTPUT = "Hello my name is Sarah and I am a 25 year old woman from the United States. I am a college graduate and I am currently working as a marketing specialist for a small"

    device_map = "cuda"

    # called only once for all test in this class
    @classmethod
    def setUpClass(cls):
        """
        Setup quantized model
        """
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
        cls.quantized_model = AutoModelForCausalLM.from_pretrained(
            cls.model_name,
            device_map=cls.device_map,
        )

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)
        gc.collect()

    def test_quantized_model(self):
        """
        Simple test that checks if the quantized model is working properly
        """
        input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)

        output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
        self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    def test_raise_if_non_quantized(self):
        model_id = "facebook/opt-125m"
        quantization_config = VptqConfig()

        with self.assertRaises(ValueError):
            _ = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)

    def test_save_pretrained(self):
        """
        Simple test that checks if the quantized model is working properly after being saved and loaded
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)
            model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)

            input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)

            output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
            self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    @require_torch_multi_gpu
    def test_quantized_model_multi_gpu(self):
        """
        Simple test that checks if the quantized model is working properly with multiple GPUs
        """
        input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)

        quantized_model = AutoModelForCausalLM.from_pretrained(self.model_name, device_map="auto")

        self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})

        output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)

        self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    def test_quantized_model_conversion(self):
        """
        Simple test that checks if the quantized model has been converted properly
        """
        from vptq import VQuantLinear

        from transformers.integrations import replace_with_vptq_linear

        model_id = "facebook/opt-350m"
        config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
        modules_to_not_convert = ["lm_head"]
        names = [
            "q_proj",
            "k_proj",
            "v_proj",
            "out_proj",
            "fc1",
            "fc2",
        ]
        value = {
            "enable_norm": True,
            "enable_perm": True,
            "group_num": 1,
            "group_size": 128,
            "indices_as_float": False,
            "num_centroids": [-1, 128],
            "num_res_centroids": [-1, 128],
            "outlier_size": 0,
            "vector_lens": [-1, 12],
        }
        shared_layer_config = {}
        for name in names:
            shared_layer_config[name] = value
        for i in range(24):
            modules_to_not_convert.append(f"model.decoder.layers.{i}.fc1")
        layer_configs = {}
        layer_configs["model.decoder.project_out"] = value
        layer_configs["model.decoder.project_in"] = value
        quantization_config = VptqConfig(config_for_layers=layer_configs, shared_layer_config=shared_layer_config)

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        nb_linears = 0
        for module in model.modules():
            if isinstance(module, torch.nn.Linear):
                nb_linears += 1

        model, _ = replace_with_vptq_linear(model, quantization_config=quantization_config)
        nb_vptq_linear = 0
        for module in model.modules():
            if isinstance(module, VQuantLinear):
                nb_vptq_linear += 1

        self.assertEqual(nb_linears - 1, nb_vptq_linear)

        # Try with `linear_weights_not_to_quantize`
        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)
        quantization_config = VptqConfig(config_for_layers=layer_configs, shared_layer_config=shared_layer_config)
        model, _ = replace_with_vptq_linear(
            model, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert
        )
        nb_vptq_linear = 0
        for module in model.modules():
            if isinstance(module, VQuantLinear):
                nb_vptq_linear += 1
        # 25 comes from 24 decoder.layers.{layer_idx}.fc1
        # and the last lm_head
        self.assertEqual(nb_linears - 25, nb_vptq_linear)