File size: 11,784 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, FineGrainedFP8Config, OPTForCausalLM
from transformers.testing_utils import (
    backend_empty_cache,
    get_device_properties,
    require_accelerate,
    require_read_token,
    require_torch_accelerator,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
from transformers.utils import is_accelerate_available, is_torch_available


if is_torch_available():
    import torch

if is_accelerate_available():
    from accelerate import init_empty_weights


@require_torch_accelerator
class FineGrainedFP8ConfigTest(unittest.TestCase):
    def test_to_dict(self):
        """
        Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
        """
        quantization_config = FineGrainedFP8Config()
        config_to_dict = quantization_config.to_dict()

        for key in config_to_dict:
            self.assertEqual(getattr(quantization_config, key), config_to_dict[key])

    def test_from_dict(self):
        """
        Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
        """
        dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "fp8"}
        quantization_config = FineGrainedFP8Config.from_dict(dict)

        self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert)
        self.assertEqual(dict["quant_method"], quantization_config.quant_method)


@slow
@require_accelerate
@require_read_token
@require_torch_accelerator
class FP8QuantizerTest(unittest.TestCase):
    model_name = "meta-llama/Llama-3.2-1B"
    input_text = "Once upon a time"
    max_new_tokens = 10
    EXPECTED_OUTPUT = "Once upon a time, there was a man who was very rich."
    device_map = torch_device
    offload_device_map = {
        "model.embed_tokens": 0,
        "model.layers.0": 0,
        "model.layers.1": 0,
        "model.layers.2": 0,
        "model.layers.3": 0,
        "model.layers.4": 0,
        "model.layers.5": 0,
        "model.layers.6": 0,
        "model.layers.7": "cpu",
        "model.layers.8": "cpu",
        "model.layers.9": "cpu",
        "model.layers.10": "cpu",
        "model.layers.11": "cpu",
        "model.layers.12": "cpu",
        "model.layers.13": "cpu",
        "model.layers.14": "cpu",
        "model.layers.15": "cpu",
        "model.rotary_emb": "disk",
        "model.norm": "disk",
        "lm_head": 0,
    }

    @classmethod
    def setUpClass(cls):
        """
        Setup quantized model
        """
        cls.quantization_config = FineGrainedFP8Config()
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
        cls.quantized_model = AutoModelForCausalLM.from_pretrained(
            cls.model_name, device_map=cls.device_map, quantization_config=cls.quantization_config
        )

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)
        gc.collect()

    def test_quantized_model_conversion(self):
        """
        Simple test that checks if the quantized model has been converted properly
        """

        from transformers.integrations import FP8Linear, replace_with_fp8_linear

        model_id = "facebook/opt-350m"
        config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
        quantization_config = FineGrainedFP8Config()

        with init_empty_weights():
            model = OPTForCausalLM(config)

        nb_linears = 0
        for module in model.modules():
            if isinstance(module, torch.nn.Linear):
                nb_linears += 1

        model = replace_with_fp8_linear(model, quantization_config=quantization_config)
        nb_fp8_linear = 0
        for module in model.modules():
            if isinstance(module, FP8Linear):
                nb_fp8_linear += 1

        self.assertEqual(nb_linears - 1, nb_fp8_linear)

        with init_empty_weights():
            model = OPTForCausalLM(config)
        quantization_config = FineGrainedFP8Config(modules_to_not_convert=["fc1"])
        model = replace_with_fp8_linear(model, quantization_config=quantization_config)
        nb_fp8_linear = 0
        for module in model.modules():
            if isinstance(module, FP8Linear):
                nb_fp8_linear += 1

        self.assertEqual(nb_linears - 25, nb_fp8_linear)

    def test_quantized_model(self):
        """
        Simple test that checks if the quantized model is working properly
        """
        input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map)

        output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
        output_tokens = self.tokenizer.decode(output[0], skip_special_tokens=True)
        self.assertEqual(output_tokens, self.EXPECTED_OUTPUT)

    def test_save_pretrained(self):
        """
        Simple test that checks if the quantized model is working properly after being saved and loaded
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)

            model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)

            input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map)

            output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
            self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    def test_weight_and_weight_scale_inv(self):
        """
        Simple test that checks if the weight and weight_scale_inv are working properly
        """
        weight = self.quantized_model.model.layers[0].self_attn.q_proj.weight
        weight_scale_inv = self.quantized_model.model.layers[0].self_attn.q_proj.weight_scale_inv
        self.assertEqual(weight.dtype, torch.float8_e4m3fn)
        self.assertEqual(weight_scale_inv.dtype, torch.float32)
        self.assertEqual(weight.shape, (weight_scale_inv.shape[0] * 128, weight_scale_inv.shape[1] * 128))

    def test_block_size(self):
        """
        Simple test that checks if the block size is working properly
        """
        self.assertEqual(self.quantized_model.config.quantization_config.weight_block_size, (128, 128))
        quantization_config = FineGrainedFP8Config(weight_block_size=(32, 32))
        quantized_model = AutoModelForCausalLM.from_pretrained(
            self.model_name, device_map=self.device_map, quantization_config=quantization_config
        )
        self.assertEqual(quantized_model.config.quantization_config.weight_block_size, (32, 32))

    @require_torch_multi_accelerator
    def test_quantized_model_multi_accelerator(self):
        """
        Simple test that checks if the quantized model is working properly with multiple accelerators
        set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUs; or set ZE_AFFINITY_MASK=0,1 if you
        have more than 2 XPUs.
        """
        input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map)
        quantization_config = FineGrainedFP8Config()
        quantized_model = AutoModelForCausalLM.from_pretrained(
            self.model_name, device_map="auto", quantization_config=quantization_config
        )
        self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})

        output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
        self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    @require_torch_multi_accelerator
    def test_save_pretrained_multi_accelerators(self):
        """
        Simple test that checks if the quantized model is working properly after being saved and loaded
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)

            model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto")
            self.assertTrue(set(model.hf_device_map.values()) == {0, 1})

            input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map)

            output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
            self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)

    def test_quantized_model_offload(self):
        """
        Simple test that checks if the quantized model returns an error when loading with cpu/disk offloaded
        """
        with self.assertRaisesRegex(
            ValueError, "You are attempting to load an FP8 model with a device_map that contains a cpu/disk device."
        ):
            AutoModelForCausalLM.from_pretrained(
                self.model_name, device_map=self.offload_device_map, quantization_config=self.quantization_config
            )

    def test_save_pretrained_offload(self):
        """
        Simple test that checks if the saved quantized model is working properly cpu/disk offload
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.quantized_model.save_pretrained(tmpdirname)

            input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(self.device_map)

            quantized_model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.offload_device_map)
            output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens, do_sample=False)
            self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)


@require_torch_accelerator
class FP8LinearTest(unittest.TestCase):
    device = torch_device

    @unittest.skipIf(
        get_device_properties()[0] == "cuda" and get_device_properties()[1] < 9,
        "Skipping FP8LinearTest because it is not supported on GPU with capability < 9.0",
    )
    def test_linear_preserves_shape(self):
        """
        Test that FP8Linear preserves shape when in_features == out_features.
        """
        from transformers.integrations import FP8Linear

        linear = FP8Linear(256, 256, block_size=(128, 128), device=self.device)
        x = torch.rand((1, 5, 256)).to(self.device)

        x_ = linear(x)
        self.assertEqual(x_.shape, x.shape)

    @unittest.skipIf(
        get_device_properties()[0] == "cuda" and get_device_properties()[1] < 9,
        "Skipping FP8LinearTest because it is not supported on GPU with capability < 9.0",
    )
    def test_linear_with_diff_feature_size_preserves_shape(self):
        """
        Test that FP8Linear generates the correct shape when in_features != out_features.
        """
        from transformers.integrations import FP8Linear

        linear = FP8Linear(128, 256, block_size=(128, 128), device=self.device)
        x = torch.rand((1, 5, 128)).to(self.device)

        x_ = linear(x)
        self.assertEqual(x_.shape, (1, 5, 256))