File size: 7,822 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitNetQuantConfig,
OPTForCausalLM,
)
from transformers.testing_utils import (
backend_empty_cache,
require_accelerate,
require_torch_gpu,
slow,
torch_device,
)
from transformers.utils import is_accelerate_available, is_torch_available
if is_torch_available():
import torch
if is_accelerate_available():
from accelerate import init_empty_weights
@require_torch_gpu
class BitNetQuantConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
"""
quantization_config = BitNetQuantConfig()
config_to_dict = quantization_config.to_dict()
for key in config_to_dict:
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
@slow
@require_torch_gpu
@require_accelerate
class BitNetTest(unittest.TestCase):
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens"
# called only once for all test in this class
@classmethod
def setUpClass(cls):
"""
Load the model
"""
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.quantized_model = AutoModelForCausalLM.from_pretrained(cls.model_name, device_map=torch_device)
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
gc.collect()
def test_replace_with_bitlinear(self):
from transformers.integrations import BitLinear, replace_with_bitnet_linear
model_id = "facebook/opt-350m"
config = AutoConfig.from_pretrained(model_id)
with init_empty_weights():
model = OPTForCausalLM(config)
nb_linears = 0
for module in model.modules():
if isinstance(module, torch.nn.Linear):
nb_linears += 1
model = replace_with_bitnet_linear(model)
nb_bitnet_linear = 0
for module in model.modules():
if isinstance(module, BitLinear):
nb_bitnet_linear += 1
self.assertEqual(nb_linears - 1, nb_bitnet_linear)
def test_quantized_model(self):
"""
Simple test that checks if the quantized model is working properly
"""
input_text = "What are we having for dinner?"
expected_output = "What are we having for dinner? What are we going to do for fun this weekend?"
input_ids = self.tokenizer(input_text, return_tensors="pt").to(torch_device)
output = self.quantized_model.generate(**input_ids, max_new_tokens=11, do_sample=False)
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), expected_output)
def test_packing_unpacking(self):
"""
Simple test the packing and unpacking logic
"""
from transformers.integrations import pack_weights, unpack_weights
u = torch.randint(0, 255, (256, 256), dtype=torch.uint8)
unpacked_u = unpack_weights(u, dtype=torch.bfloat16)
repacked_u = pack_weights(unpacked_u)
for i in range(u.shape[0]):
for j in range(u.shape[1]):
self.assertEqual(repacked_u[i][j], u[i][j])
def test_activation_quant(self):
"""
test the activation function behaviour
"""
from transformers.integrations import BitLinear
layer = BitLinear(in_features=4, out_features=2, bias=False, dtype=torch.float32)
layer.to(torch_device)
input_tensor = torch.tensor([1.0, -1.0, -1.0, 1.0], dtype=torch.float32).to(torch_device)
# Quantize the input tensor
quantized_tensor, scale = layer.activation_quant(input_tensor)
# Verify the output quantized tensor
for i in range(input_tensor.shape[0]):
self.assertEqual(quantized_tensor[i] / scale, input_tensor[i])
# Verify the scale tensor
self.assertEqual(scale, 127)
def test_weights_dtype(self):
"""
test the weights dtype after loading
"""
self_attn_q = self.quantized_model.model.layers[0].self_attn.q_proj.weight
self_attn_k = self.quantized_model.model.layers[0].self_attn.k_proj.weight
self_attn_v = self.quantized_model.model.layers[0].self_attn.v_proj.weight
self_attn_o = self.quantized_model.model.layers[0].self_attn.o_proj.weight
mlp_gate = self.quantized_model.model.layers[0].mlp.gate_proj.weight
mlp_up = self.quantized_model.model.layers[0].mlp.up_proj.weight
mlp_down = self.quantized_model.model.layers[0].mlp.down_proj.weight
self.assertEqual(self_attn_q.dtype, torch.uint8)
self.assertEqual(self_attn_k.dtype, torch.uint8)
self.assertEqual(self_attn_v.dtype, torch.uint8)
self.assertEqual(self_attn_o.dtype, torch.uint8)
self.assertEqual(mlp_up.dtype, torch.uint8)
self.assertEqual(mlp_gate.dtype, torch.uint8)
self.assertEqual(mlp_down.dtype, torch.uint8)
def test_replace_with_bitlinear_shape(self):
"""
test that the BitNet layer weight shapes are correct, and the weight_scale is correctly initialized to 1
"""
from transformers.integrations import replace_with_bitnet_linear
out_features = 1024
in_features = 512
class SimpleLinearModule(torch.nn.Module):
"""
Simple class to test BitLinear
"""
def __init__(
self,
in_features: int = in_features,
out_features: int = out_features,
bias: bool = False,
):
super().__init__()
self.linear = torch.nn.Linear(in_features=in_features, out_features=out_features, bias=bias)
def forward(self, x):
return self.linear(x)
model = SimpleLinearModule()
replace_with_bitnet_linear(model)
self.assertEqual(list(model.linear.weight.shape), [out_features // 4, in_features])
self.assertEqual(model.linear.weight_scale, 1)
@slow
@require_torch_gpu
@require_accelerate
class BitNetSerializationTest(unittest.TestCase):
def test_model_serialization(self):
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens"
quantized_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=torch_device)
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
with torch.no_grad():
logits_ref = quantized_model.forward(input_tensor).logits
# Save
saved_model_id = "quant_model"
quantized_model.save_pretrained(saved_model_id)
# Remove old model
del quantized_model
backend_empty_cache(torch_device)
# Load and check if the logits match
model_loaded = AutoModelForCausalLM.from_pretrained("quant_model", device_map=torch_device)
with torch.no_grad():
logits_loaded = model_loaded.forward(input_tensor).logits
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
|