File size: 4,703 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from huggingface_hub import VideoClassificationOutputElement, hf_hub_download

from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
    compare_pipeline_output_to_hub_spec,
    is_pipeline_test,
    nested_simplify,
    require_av,
    require_tf,
    require_torch,
    require_torch_or_tf,
    require_vision,
)

from .test_pipelines_common import ANY


@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_av
class VideoClassificationPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
    example_video_filepath = None

    @classmethod
    def _load_dataset(cls):
        # Lazy loading of the dataset. Because it is a class method, it will only be loaded once per pytest process.
        if cls.example_video_filepath is None:
            cls.example_video_filepath = hf_hub_download(
                repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset"
            )

    def get_test_pipeline(
        self,
        model,
        tokenizer=None,
        image_processor=None,
        feature_extractor=None,
        processor=None,
        torch_dtype="float32",
    ):
        self._load_dataset()
        video_classifier = VideoClassificationPipeline(
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            image_processor=image_processor,
            processor=processor,
            torch_dtype=torch_dtype,
            top_k=2,
        )
        examples = [
            self.example_video_filepath,
            # TODO: re-enable this once we have a stable hub solution for CI
            # "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
        ]
        return video_classifier, examples

    def run_pipeline_test(self, video_classifier, examples):
        for example in examples:
            outputs = video_classifier(example)

            self.assertEqual(
                outputs,
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
            )
            for element in outputs:
                compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement)

    @require_torch
    def test_small_model_pt(self):
        small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
        small_feature_extractor = VideoMAEFeatureExtractor(
            size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10}
        )
        video_classifier = pipeline(
            "video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4
        )

        video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset")
        output = video_classifier(video_file_path, top_k=2)
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
        )
        for element in output:
            compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement)

        outputs = video_classifier(
            [
                video_file_path,
                video_file_path,
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
                [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
            ],
        )
        for output in outputs:
            for element in output:
                compare_pipeline_output_to_hub_spec(element, VideoClassificationOutputElement)

    @require_tf
    @unittest.skip
    def test_small_model_tf(self):
        pass