File size: 20,651 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
from transformers.testing_utils import (
    CaptureLogger,
    is_pipeline_test,
    require_accelerate,
    require_torch,
    require_torch_accelerator,
    require_torch_or_tf,
    torch_device,
)

from .test_pipelines_common import ANY


@is_pipeline_test
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING

    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-random-LlamaForCausalLM",
            framework="pt",
            max_new_tokens=10,
        )
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(outputs, [{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}])

        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}],
                [{"generated_text": "This is a second testкт MéxicoWSAnimImportдели Düsseld bootstrap learn user"}],
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )

    @require_torch
    def test_small_chat_model_pt(self):
        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-gpt2-with-chatml-template",
            framework="pt",
        )
        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
        ]
        chat2 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a second test"},
        ]
        outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
        expected_chat1 = chat1 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]
        self.assertEqual(
            outputs,
            [
                {"generated_text": expected_chat1},
            ],
        )

        outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10)
        expected_chat2 = chat2 + [
            {
                "role": "assistant",
                "content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
            }
        ]

        self.assertEqual(
            outputs,
            [
                [{"generated_text": expected_chat1}],
                [{"generated_text": expected_chat2}],
            ],
        )

    @require_torch
    def test_small_chat_model_continue_final_message(self):
        # Here we check that passing a chat that ends in an assistant message is handled correctly
        # by continuing the final message rather than starting a new one
        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-gpt2-with-chatml-template",
            framework="pt",
        )
        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
            {"role": "assistant", "content": "This is"},
        ]
        outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)

        # Assert that we continued the last message and there isn't a sneaky <|im_end|>
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": [
                        {"role": "system", "content": "This is a system message."},
                        {"role": "user", "content": "This is a test"},
                        {
                            "role": "assistant",
                            "content": "This is stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
                        },
                    ]
                }
            ],
        )

    @require_torch
    def test_small_chat_model_continue_final_message_override(self):
        # Here we check that passing a chat that ends in an assistant message is handled correctly
        # by continuing the final message rather than starting a new one
        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-gpt2-with-chatml-template",
            framework="pt",
        )
        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
        ]
        outputs = text_generator(chat1, do_sample=False, max_new_tokens=10, continue_final_message=True)

        # Assert that we continued the last message and there isn't a sneaky <|im_end|>
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": [
                        {"role": "system", "content": "This is a system message."},
                        {
                            "role": "user",
                            "content": "This is a test stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
                        },
                    ]
                }
            ],
        )

    @require_torch
    def test_small_chat_model_with_dataset_pt(self):
        from torch.utils.data import Dataset

        from transformers.pipelines.pt_utils import KeyDataset

        class MyDataset(Dataset):
            data = [
                [
                    {"role": "system", "content": "This is a system message."},
                    {"role": "user", "content": "This is a test"},
                ],
            ]

            def __len__(self):
                return 1

            def __getitem__(self, i):
                return {"text": self.data[i]}

        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-gpt2-with-chatml-template",
            framework="pt",
        )

        dataset = MyDataset()
        key_dataset = KeyDataset(dataset, "text")

        for outputs in text_generator(key_dataset, do_sample=False, max_new_tokens=10):
            expected_chat = dataset.data[0] + [
                {
                    "role": "assistant",
                    "content": " factors factors factors factors factors factors factors factors factors factors",
                }
            ]
            self.assertEqual(
                outputs,
                [
                    {"generated_text": expected_chat},
                ],
            )

    @require_torch
    def test_small_chat_model_with_iterator_pt(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        text_generator = pipeline(
            task="text-generation",
            model="hf-internal-testing/tiny-gpt2-with-chatml-template",
            framework="pt",
        )

        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
        ]
        chat2 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a second test"},
        ]
        expected_chat1 = chat1 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]
        expected_chat2 = chat2 + [
            {
                "role": "assistant",
                "content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
            }
        ]

        def data():
            yield from [chat1, chat2]

        outputs = text_generator(data(), do_sample=False, max_new_tokens=10)
        assert isinstance(outputs, PipelineIterator)
        outputs = list(outputs)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": expected_chat1}],
                [{"generated_text": expected_chat2}],
            ],
        )

    def get_test_pipeline(
        self,
        model,
        tokenizer=None,
        image_processor=None,
        feature_extractor=None,
        processor=None,
        torch_dtype="float32",
    ):
        text_generator = TextGenerationPipeline(
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            image_processor=image_processor,
            processor=processor,
            torch_dtype=torch_dtype,
            max_new_tokens=5,
        )
        return text_generator, ["This is a test", "Another test"]

    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline(
            "text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5, do_sample=False
        )
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

        outputs = text_generator("This is a test")
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))

        outputs = text_generator("This is a test", return_full_text=False)
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        text_generator = pipeline(
            task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False, max_new_tokens=5
        )
        outputs = text_generator("This is a test")
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))

        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)

        # Empty prompt is slightly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("", add_special_tokens=False)

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            self.skipTest(reason="TF generation does not support max_new_tokens")
        # We don't care about infinite range models.
        # They already work.
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
            "RwkvForCausalLM",
            "XGLMForCausalLM",
            "GPTNeoXForCausalLM",
            "GPTNeoXJapaneseForCausalLM",
            "FuyuForCausalLM",
            "LlamaForCausalLM",
        ]
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
            # Handling of large generations
            if str(text_generator.device) == "cpu":
                with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                    text_generator("This is a test" * 500, max_new_tokens=5)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=5)
            # Hole strategy cannot work
            if str(text_generator.device) == "cpu":
                with self.assertRaises(ValueError):
                    text_generator(
                        "This is a test" * 500,
                        handle_long_generation="hole",
                        max_new_tokens=tokenizer.model_max_length + 10,
                    )

    @require_torch
    @require_accelerate
    @require_torch_accelerator
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
            max_new_tokens=5,
            do_sample=False,
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [{"generated_text": ("This is a test test test test test test")}],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device_map="auto",
            torch_dtype=torch.bfloat16,
            max_new_tokens=5,
            do_sample=False,
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [{"generated_text": ("This is a test test test test test test")}],
        )

        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom", device_map="auto", max_new_tokens=5, do_sample=False
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [{"generated_text": ("This is a test test test test test test")}],
        )

    @require_torch
    @require_torch_accelerator
    def test_small_model_fp16(self):
        import torch

        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device=torch_device,
            torch_dtype=torch.float16,
            max_new_tokens=3,
        )
        pipe("This is a test")

    @require_torch
    @require_accelerate
    @require_torch_accelerator
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device_map=torch_device,
            torch_dtype=torch.float16,
            max_new_tokens=3,
        )
        pipe("This is a test", do_sample=True, top_p=0.5)

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5)
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beginning of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=None)
        self.assertNotIn(logger_msg, cl.out)

    def test_return_dict_in_generate(self):
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=2)
        out = text_generator(
            ["This is great !", "Something else"], return_dict_in_generate=True, output_logits=True, output_scores=True
        )
        self.assertEqual(
            out,
            [
                [
                    {
                        "generated_text": ANY(str),
                        "logits": ANY(list),
                        "scores": ANY(list),
                    },
                ],
                [
                    {
                        "generated_text": ANY(str),
                        "logits": ANY(list),
                        "scores": ANY(list),
                    },
                ],
            ],
        )

    @require_torch
    def test_pipeline_assisted_generation(self):
        """Tests that we can run assisted generation in the pipeline"""
        model = "hf-internal-testing/tiny-random-MistralForCausalLM"
        pipe = pipeline("text-generation", model=model, assistant_model=model, max_new_tokens=2)

        # We can run the pipeline
        prompt = "Hello world"
        _ = pipe(prompt)

        # It is running assisted generation under the hood (e.g. flags incompatible with assisted gen will crash)
        with self.assertRaises(ValueError):
            _ = pipe(prompt, generate_kwargs={"num_beams": 2})