File size: 20,651 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_torch,
require_torch_accelerator,
require_torch_or_tf,
torch_device,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def test_small_model_pt(self):
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-random-LlamaForCausalLM",
framework="pt",
max_new_tokens=10,
)
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(outputs, [{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}])
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
self.assertEqual(
outputs,
[
[{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}],
[{"generated_text": "This is a second testкт MéxicoWSAnimImportдели Düsseld bootstrap learn user"}],
],
)
outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
self.assertEqual(
outputs,
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
)
@require_torch
def test_small_chat_model_pt(self):
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
chat2 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a second test"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
expected_chat1 = chat1 + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
self.assertEqual(
outputs,
[
{"generated_text": expected_chat1},
],
)
outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10)
expected_chat2 = chat2 + [
{
"role": "assistant",
"content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
}
]
self.assertEqual(
outputs,
[
[{"generated_text": expected_chat1}],
[{"generated_text": expected_chat2}],
],
)
@require_torch
def test_small_chat_model_continue_final_message(self):
# Here we check that passing a chat that ends in an assistant message is handled correctly
# by continuing the final message rather than starting a new one
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
{"role": "assistant", "content": "This is"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
# Assert that we continued the last message and there isn't a sneaky <|im_end|>
self.assertEqual(
outputs,
[
{
"generated_text": [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
{
"role": "assistant",
"content": "This is stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
},
]
}
],
)
@require_torch
def test_small_chat_model_continue_final_message_override(self):
# Here we check that passing a chat that ends in an assistant message is handled correctly
# by continuing the final message rather than starting a new one
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10, continue_final_message=True)
# Assert that we continued the last message and there isn't a sneaky <|im_end|>
self.assertEqual(
outputs,
[
{
"generated_text": [
{"role": "system", "content": "This is a system message."},
{
"role": "user",
"content": "This is a test stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
},
]
}
],
)
@require_torch
def test_small_chat_model_with_dataset_pt(self):
from torch.utils.data import Dataset
from transformers.pipelines.pt_utils import KeyDataset
class MyDataset(Dataset):
data = [
[
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
],
]
def __len__(self):
return 1
def __getitem__(self, i):
return {"text": self.data[i]}
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
dataset = MyDataset()
key_dataset = KeyDataset(dataset, "text")
for outputs in text_generator(key_dataset, do_sample=False, max_new_tokens=10):
expected_chat = dataset.data[0] + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
self.assertEqual(
outputs,
[
{"generated_text": expected_chat},
],
)
@require_torch
def test_small_chat_model_with_iterator_pt(self):
from transformers.pipelines.pt_utils import PipelineIterator
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
chat2 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a second test"},
]
expected_chat1 = chat1 + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
expected_chat2 = chat2 + [
{
"role": "assistant",
"content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
}
]
def data():
yield from [chat1, chat2]
outputs = text_generator(data(), do_sample=False, max_new_tokens=10)
assert isinstance(outputs, PipelineIterator)
outputs = list(outputs)
self.assertEqual(
outputs,
[
[{"generated_text": expected_chat1}],
[{"generated_text": expected_chat2}],
],
)
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
text_generator = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
max_new_tokens=5,
)
return text_generator, ["This is a test", "Another test"]
def test_stop_sequence_stopping_criteria(self):
prompt = """Hello I believe in"""
text_generator = pipeline(
"text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5, do_sample=False
)
output = text_generator(prompt)
self.assertEqual(
output,
[{"generated_text": "Hello I believe in fe fe fe fe fe"}],
)
output = text_generator(prompt, stop_sequence=" fe")
self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])
def run_pipeline_test(self, text_generator, _):
model = text_generator.model
tokenizer = text_generator.tokenizer
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator("This is a test", return_full_text=False)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
text_generator = pipeline(
task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False, max_new_tokens=5
)
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
outputs = text_generator("This is a test", return_full_text=True)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
if text_generator.tokenizer.pad_token is not None:
outputs = text_generator(
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_text=True)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_tensors=True)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_text=True, return_tensors=True)
# Empty prompt is slightly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
outputs = text_generator("")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
else:
with self.assertRaises((ValueError, AssertionError)):
outputs = text_generator("", add_special_tokens=False)
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
self.skipTest(reason="TF generation does not support max_new_tokens")
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
"RwkvForCausalLM",
"XGLMForCausalLM",
"GPTNeoXForCausalLM",
"GPTNeoXJapaneseForCausalLM",
"FuyuForCausalLM",
"LlamaForCausalLM",
]
if (
tokenizer.model_max_length < 10000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
if str(text_generator.device) == "cpu":
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
text_generator("This is a test" * 500, max_new_tokens=5)
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=5)
# Hole strategy cannot work
if str(text_generator.device) == "cpu":
with self.assertRaises(ValueError):
text_generator(
"This is a test" * 500,
handle_long_generation="hole",
max_new_tokens=tokenizer.model_max_length + 10,
)
@require_torch
@require_accelerate
@require_torch_accelerator
def test_small_model_pt_bloom_accelerate(self):
import torch
# Classic `model_kwargs`
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
max_new_tokens=5,
do_sample=False,
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device_map="auto",
torch_dtype=torch.bfloat16,
max_new_tokens=5,
do_sample=False,
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom", device_map="auto", max_new_tokens=5, do_sample=False
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
@require_torch
@require_torch_accelerator
def test_small_model_fp16(self):
import torch
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device=torch_device,
torch_dtype=torch.float16,
max_new_tokens=3,
)
pipe("This is a test")
@require_torch
@require_accelerate
@require_torch_accelerator
def test_pipeline_accelerate_top_p(self):
import torch
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device_map=torch_device,
torch_dtype=torch.float16,
max_new_tokens=3,
)
pipe("This is a test", do_sample=True, top_p=0.5)
def test_pipeline_length_setting_warning(self):
prompt = """Hello world"""
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5)
if text_generator.model.framework == "tf":
logger = logging.get_logger("transformers.generation.tf_utils")
else:
logger = logging.get_logger("transformers.generation.utils")
logger_msg = "Both `max_new_tokens`" # The beginning of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_length=10, max_new_tokens=1)
self.assertIn(logger_msg, cl.out)
# The user only sets one -> no warning
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_new_tokens=1)
self.assertNotIn(logger_msg, cl.out)
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_length=10, max_new_tokens=None)
self.assertNotIn(logger_msg, cl.out)
def test_return_dict_in_generate(self):
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=2)
out = text_generator(
["This is great !", "Something else"], return_dict_in_generate=True, output_logits=True, output_scores=True
)
self.assertEqual(
out,
[
[
{
"generated_text": ANY(str),
"logits": ANY(list),
"scores": ANY(list),
},
],
[
{
"generated_text": ANY(str),
"logits": ANY(list),
"scores": ANY(list),
},
],
],
)
@require_torch
def test_pipeline_assisted_generation(self):
"""Tests that we can run assisted generation in the pipeline"""
model = "hf-internal-testing/tiny-random-MistralForCausalLM"
pipe = pipeline("text-generation", model=model, assistant_model=model, max_new_tokens=2)
# We can run the pipeline
prompt = "Hello world"
_ = pipe(prompt)
# It is running assisted generation under the hood (e.g. flags incompatible with assisted gen will crash)
with self.assertRaises(ValueError):
_ = pipe(prompt, generate_kwargs={"num_beams": 2})
|