File size: 8,886 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import datasets
import numpy as np
from huggingface_hub import AudioClassificationOutputElement

from transformers import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
    is_torch_available,
)
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
    compare_pipeline_output_to_hub_spec,
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_torchaudio,
    slow,
)

from .test_pipelines_common import ANY


if is_torch_available():
    import torch


@is_pipeline_test
class AudioClassificationPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
    _dataset = None

    @classmethod
    def _load_dataset(cls):
        # Lazy loading of the dataset. Because it is a class method, it will only be loaded once per pytest process.
        if cls._dataset is None:
            cls._dataset = datasets.load_dataset(
                "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
            )

    def get_test_pipeline(
        self,
        model,
        tokenizer=None,
        image_processor=None,
        feature_extractor=None,
        processor=None,
        torch_dtype="float32",
    ):
        audio_classifier = AudioClassificationPipeline(
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            image_processor=image_processor,
            processor=processor,
            torch_dtype=torch_dtype,
        )

        # test with a raw waveform
        audio = np.zeros((34000,))
        audio2 = np.zeros((14000,))
        return audio_classifier, [audio2, audio]

    def run_pipeline_test(self, audio_classifier, examples):
        audio2, audio = examples
        output = audio_classifier(audio)
        # by default a model is initialized with num_labels=2
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )
        output = audio_classifier(audio, top_k=1)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        self.run_torchaudio(audio_classifier)

        for single_output in output:
            compare_pipeline_output_to_hub_spec(single_output, AudioClassificationOutputElement)

    @require_torchaudio
    def run_torchaudio(self, audio_classifier):
        self._load_dataset()
        # test with a local file
        audio = self._dataset[0]["audio"]["array"]
        output = audio_classifier(audio)
        self.assertEqual(
            output,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        model = "anton-l/wav2vec2-random-tiny-classifier"

        audio_classifier = pipeline("audio-classification", model=model)

        audio = np.ones((8000,))
        output = audio_classifier(audio, top_k=4)

        EXPECTED_OUTPUT = [
            {"score": 0.0842, "label": "no"},
            {"score": 0.0838, "label": "up"},
            {"score": 0.0837, "label": "go"},
            {"score": 0.0834, "label": "right"},
        ]
        EXPECTED_OUTPUT_PT_2 = [
            {"score": 0.0845, "label": "stop"},
            {"score": 0.0844, "label": "on"},
            {"score": 0.0841, "label": "right"},
            {"score": 0.0834, "label": "left"},
        ]
        self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])

        audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate}
        output = audio_classifier(audio_dict, top_k=4)
        self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])

    @require_torch
    def test_small_model_pt_fp16(self):
        model = "anton-l/wav2vec2-random-tiny-classifier"

        audio_classifier = pipeline("audio-classification", model=model, torch_dtype=torch.float16)

        audio = np.ones((8000,))
        output = audio_classifier(audio, top_k=4)

        # Expected outputs are collected running the test on torch 2.6 in few scenarios.
        # Running on CUDA T4/A100 and on XPU PVC (note: using stock torch xpu, NOT using IPEX):
        EXPECTED_OUTPUT = [
            {"score": 0.0833, "label": "go"},
            {"score": 0.0833, "label": "off"},
            {"score": 0.0833, "label": "stop"},
            {"score": 0.0833, "label": "on"},
        ]
        # Running on CPU:
        EXPECTED_OUTPUT_PT_2 = [
            {"score": 0.0839, "label": "no"},
            {"score": 0.0837, "label": "go"},
            {"score": 0.0836, "label": "yes"},
            {"score": 0.0835, "label": "right"},
        ]
        self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])

        audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate}
        output = audio_classifier(audio_dict, top_k=4)
        self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])

    @require_torch
    @slow
    def test_large_model_pt(self):
        model = "superb/wav2vec2-base-superb-ks"

        audio_classifier = pipeline("audio-classification", model=model)
        dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test", trust_remote_code=True)

        audio = np.array(dataset[3]["speech"], dtype=np.float32)
        output = audio_classifier(audio, top_k=4)
        self.assertEqual(
            nested_simplify(output, decimals=3),
            [
                {"score": 0.981, "label": "go"},
                {"score": 0.007, "label": "up"},
                {"score": 0.006, "label": "_unknown_"},
                {"score": 0.001, "label": "down"},
            ],
        )

    @require_tf
    @unittest.skip(reason="Audio classification is not implemented for TF")
    def test_small_model_tf(self):
        pass

    @require_torch
    @slow
    def test_top_k_none_returns_all_labels(self):
        model_name = "superb/wav2vec2-base-superb-ks"  # model with more than 5 labels
        classification_pipeline = pipeline(
            "audio-classification",
            model=model_name,
            top_k=None,
        )

        # Create dummy input
        sampling_rate = 16000
        signal = np.zeros((sampling_rate,), dtype=np.float32)

        result = classification_pipeline(signal)
        num_labels = classification_pipeline.model.config.num_labels

        self.assertEqual(len(result), num_labels, "Should return all labels when top_k is None")

    @require_torch
    @slow
    def test_top_k_none_with_few_labels(self):
        model_name = "superb/hubert-base-superb-er"  # model with fewer labels
        classification_pipeline = pipeline(
            "audio-classification",
            model=model_name,
            top_k=None,
        )

        # Create dummy input
        sampling_rate = 16000
        signal = np.zeros((sampling_rate,), dtype=np.float32)

        result = classification_pipeline(signal)
        num_labels = classification_pipeline.model.config.num_labels

        self.assertEqual(len(result), num_labels, "Should handle models with fewer labels correctly")

    @require_torch
    @slow
    def test_top_k_greater_than_labels(self):
        model_name = "superb/hubert-base-superb-er"
        classification_pipeline = pipeline(
            "audio-classification",
            model=model_name,
            top_k=100,  # intentionally large number
        )

        # Create dummy input
        sampling_rate = 16000
        signal = np.zeros((sampling_rate,), dtype=np.float32)

        result = classification_pipeline(signal)
        num_labels = classification_pipeline.model.config.num_labels

        self.assertEqual(len(result), num_labels, "Should cap top_k to number of labels")