File size: 39,520 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import re
import tempfile
import unittest

from datasets import Dataset, DatasetDict
from huggingface_hub import hf_hub_download
from packaging import version

from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    OPTForCausalLM,
    Trainer,
    TrainingArguments,
    logging,
)
from transformers.testing_utils import (
    CaptureLogger,
    require_bitsandbytes,
    require_peft,
    require_torch,
    require_torch_accelerator,
    slow,
    torch_device,
)
from transformers.utils import check_torch_load_is_safe, is_torch_available


if is_torch_available():
    import torch


@require_peft
@require_torch
class PeftTesterMixin:
    peft_test_model_ids = ("peft-internal-testing/tiny-OPTForCausalLM-lora",)
    transformers_test_model_ids = ("hf-internal-testing/tiny-random-OPTForCausalLM",)
    transformers_test_model_classes = (AutoModelForCausalLM, OPTForCausalLM)


# TODO: run it with CI after PEFT release.
@slow
class PeftIntegrationTester(unittest.TestCase, PeftTesterMixin):
    """
    A testing suite that makes sure that the PeftModel class is correctly integrated into the transformers library.
    """

    def _check_lora_correctly_converted(self, model):
        """
        Utility method to check if the model has correctly adapters injected on it.
        """
        from peft.tuners.tuners_utils import BaseTunerLayer

        is_peft_loaded = False

        for _, m in model.named_modules():
            if isinstance(m, BaseTunerLayer):
                is_peft_loaded = True
                break

        return is_peft_loaded

    def test_peft_from_pretrained(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`.
        This checks if we pass a remote folder that contains an adapter config and adapter weights, it
        should correctly load a model that has adapters injected on it.
        """
        logger = logging.get_logger("transformers.integrations.peft")

        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                with CaptureLogger(logger) as cl:
                    peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
                # ensure that under normal circumstances, there  are no warnings about keys
                self.assertNotIn("unexpected keys", cl.out)
                self.assertNotIn("missing keys", cl.out)

                self.assertTrue(self._check_lora_correctly_converted(peft_model))
                self.assertTrue(peft_model._hf_peft_config_loaded)
                # dummy generation
                _ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

    def test_peft_state_dict(self):
        """
        Simple test that checks if the returned state dict of `get_adapter_state_dict()` method contains
        the expected keys.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                state_dict = peft_model.get_adapter_state_dict()

                for key in state_dict.keys():
                    self.assertTrue("lora" in key)

    def test_peft_save_pretrained(self):
        """
        Test that checks various combinations of `save_pretrained` with a model that has adapters loaded
        on it. This checks if the saved model contains the expected files (adapter weights and adapter config).
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)

                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))

                    self.assertTrue("config.json" not in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

                    peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(peft_model))

                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)
                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))

                    peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(peft_model))

    def test_peft_enable_disable_adapters(self):
        """
        A test that checks if `enable_adapters` and `disable_adapters` methods work as expected.
        """
        from peft import LoraConfig

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                peft_model.add_adapter(peft_config)

                peft_logits = peft_model(dummy_input).logits

                peft_model.disable_adapters()

                peft_logits_disabled = peft_model(dummy_input).logits

                peft_model.enable_adapters()

                peft_logits_enabled = peft_model(dummy_input).logits

                torch.testing.assert_close(peft_logits, peft_logits_enabled, rtol=1e-12, atol=1e-12)
                self.assertFalse(torch.allclose(peft_logits_enabled, peft_logits_disabled, atol=1e-12, rtol=1e-12))

    def test_peft_add_adapter(self):
        """
        Simple test that tests if `add_adapter` works as expected
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))
                # dummy generation
                _ = model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

    def test_peft_add_adapter_from_pretrained(self):
        """
        Simple test that tests if `add_adapter` works as expected
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_from_pretrained = transformers_class.from_pretrained(tmpdirname).to(torch_device)
                    self.assertTrue(self._check_lora_correctly_converted(model_from_pretrained))

    def test_peft_add_adapter_modules_to_save(self):
        """
        Simple test that tests if `add_adapter` works as expected when training with
        modules to save.
        """
        from peft import LoraConfig
        from peft.utils import ModulesToSaveWrapper

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

                model = transformers_class.from_pretrained(model_id).to(torch_device)
                peft_config = LoraConfig(init_lora_weights=False, modules_to_save=["lm_head"])
                model.add_adapter(peft_config)
                self._check_lora_correctly_converted(model)

                _has_modules_to_save_wrapper = False
                for name, module in model.named_modules():
                    if isinstance(module, ModulesToSaveWrapper):
                        _has_modules_to_save_wrapper = True
                        self.assertTrue(module.modules_to_save.default.weight.requires_grad)
                        self.assertTrue("lm_head" in name)
                        break

                self.assertTrue(_has_modules_to_save_wrapper)
                state_dict = model.get_adapter_state_dict()

                self.assertTrue("lm_head.weight" in state_dict.keys())

                logits = model(dummy_input).logits
                loss = logits.mean()
                loss.backward()

                for _, param in model.named_parameters():
                    if param.requires_grad:
                        self.assertTrue(param.grad is not None)

    def test_peft_add_adapter_training_gradient_checkpointing(self):
        """
        Simple test that tests if `add_adapter` works as expected when training with
        gradient checkpointing.
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                self.assertTrue(self._check_lora_correctly_converted(model))

                # When attaching adapters the input embeddings will stay frozen, this will
                # lead to the output embedding having requires_grad=False.
                dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
                frozen_output = model.get_input_embeddings()(dummy_input)
                self.assertTrue(frozen_output.requires_grad is False)

                model.gradient_checkpointing_enable()

                # Since here we attached the hook, the input should have requires_grad to set
                # properly
                non_frozen_output = model.get_input_embeddings()(dummy_input)
                self.assertTrue(non_frozen_output.requires_grad is True)

                # To repro the Trainer issue
                dummy_input.requires_grad = False

                for name, param in model.named_parameters():
                    if "lora" in name.lower():
                        self.assertTrue(param.requires_grad)

                logits = model(dummy_input).logits
                loss = logits.mean()
                loss.backward()

                for name, param in model.named_parameters():
                    if param.requires_grad:
                        self.assertTrue("lora" in name.lower())
                        self.assertTrue(param.grad is not None)

    def test_peft_add_multi_adapter(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
        add_adapter works as expected in multi-adapter setting.
        """
        from peft import LoraConfig
        from peft.tuners.tuners_utils import BaseTunerLayer

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                is_peft_loaded = False
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                logits_original_model = model(dummy_input).logits

                peft_config = LoraConfig(init_lora_weights=False)

                model.add_adapter(peft_config)

                logits_adapter_1 = model(dummy_input)

                model.add_adapter(peft_config, adapter_name="adapter-2")

                logits_adapter_2 = model(dummy_input)

                for _, m in model.named_modules():
                    if isinstance(m, BaseTunerLayer):
                        is_peft_loaded = True
                        break

                self.assertTrue(is_peft_loaded)

                # dummy generation
                _ = model.generate(input_ids=dummy_input)

                model.set_adapter("default")
                self.assertTrue(model.active_adapters() == ["default"])
                self.assertTrue(model.active_adapter() == "default")

                model.set_adapter("adapter-2")
                self.assertTrue(model.active_adapters() == ["adapter-2"])
                self.assertTrue(model.active_adapter() == "adapter-2")

                # Logits comparison
                self.assertFalse(
                    torch.allclose(logits_adapter_1.logits, logits_adapter_2.logits, atol=1e-6, rtol=1e-6)
                )
                self.assertFalse(torch.allclose(logits_original_model, logits_adapter_2.logits, atol=1e-6, rtol=1e-6))

                model.set_adapter(["adapter-2", "default"])
                self.assertTrue(model.active_adapters() == ["adapter-2", "default"])
                self.assertTrue(model.active_adapter() == "adapter-2")

                logits_adapter_mixed = model(dummy_input)
                self.assertFalse(
                    torch.allclose(logits_adapter_1.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
                )
                self.assertFalse(
                    torch.allclose(logits_adapter_2.logits, logits_adapter_mixed.logits, atol=1e-6, rtol=1e-6)
                )

                # multi active adapter saving not supported
                with self.assertRaises(ValueError), tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)

    def test_delete_adapter(self):
        """
        Enhanced test for `delete_adapter` to handle multiple adapters,
        edge cases, and proper error handling.
        """
        from peft import LoraConfig

        for model_id in self.transformers_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                # Add multiple adapters
                peft_config_1 = LoraConfig(init_lora_weights=False)
                peft_config_2 = LoraConfig(init_lora_weights=False)
                model.add_adapter(peft_config_1, adapter_name="adapter_1")
                model.add_adapter(peft_config_2, adapter_name="adapter_2")

                # Ensure adapters were added
                self.assertIn("adapter_1", model.peft_config)
                self.assertIn("adapter_2", model.peft_config)

                # Delete a single adapter
                model.delete_adapter("adapter_1")
                self.assertNotIn("adapter_1", model.peft_config)
                self.assertIn("adapter_2", model.peft_config)

                # Delete remaining adapter
                model.delete_adapter("adapter_2")
                self.assertFalse(hasattr(model, "peft_config"))
                self.assertFalse(model._hf_peft_config_loaded)

                # Re-add adapters for edge case tests
                model.add_adapter(peft_config_1, adapter_name="adapter_1")
                model.add_adapter(peft_config_2, adapter_name="adapter_2")

                # Attempt to delete multiple adapters at once
                model.delete_adapter(["adapter_1", "adapter_2"])
                self.assertFalse(hasattr(model, "peft_config"))
                self.assertFalse(model._hf_peft_config_loaded)

                # Test edge cases
                msg = re.escape("No adapter loaded. Please load an adapter first.")
                with self.assertRaisesRegex(ValueError, msg):
                    model.delete_adapter("nonexistent_adapter")

                model.add_adapter(peft_config_1, adapter_name="adapter_1")

                with self.assertRaisesRegex(ValueError, "The following adapter\\(s\\) are not present"):
                    model.delete_adapter("nonexistent_adapter")

                with self.assertRaisesRegex(ValueError, "The following adapter\\(s\\) are not present"):
                    model.delete_adapter(["adapter_1", "nonexistent_adapter"])

                # Deleting with an empty list or None should not raise errors
                model.add_adapter(peft_config_2, adapter_name="adapter_2")
                model.delete_adapter([])  # No-op
                self.assertIn("adapter_1", model.peft_config)
                self.assertIn("adapter_2", model.peft_config)

                # Deleting duplicate adapter names in the list
                model.delete_adapter(["adapter_1", "adapter_1"])
                self.assertNotIn("adapter_1", model.peft_config)
                self.assertIn("adapter_2", model.peft_config)

    @require_torch_accelerator
    @require_bitsandbytes
    def test_peft_from_pretrained_kwargs(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained` + additional kwargs
        and see if the integraiton behaves as expected.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                # dummy generation
                _ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))

    @require_torch_accelerator
    @require_bitsandbytes
    def test_peft_save_quantized(self):
        """
        Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
        """
        # 4bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear4bit")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)
                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

        # 8-bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)

                    self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

    @require_torch_accelerator
    @require_bitsandbytes
    def test_peft_save_quantized_regression(self):
        """
        Simple test that tests the basic usage of PEFT model save_pretrained with quantized base models
        Regression test to make sure everything works as expected before the safetensors integration.
        """
        # 4bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear4bit")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)
                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

        # 8-bit
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")

                module = peft_model.model.decoder.layers[0].self_attn.v_proj
                self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
                self.assertTrue(peft_model.hf_device_map is not None)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname, safe_serialization=False)

                    self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
                    self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
                    self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
                    self.assertTrue("model.safetensors" not in os.listdir(tmpdirname))

    def test_peft_pipeline(self):
        """
        Simple test that tests the basic usage of PEFT model + pipeline
        """
        from transformers import pipeline

        for adapter_id, base_model_id in zip(self.peft_test_model_ids, self.transformers_test_model_ids):
            peft_pipe = pipeline("text-generation", adapter_id)
            base_pipe = pipeline("text-generation", base_model_id)
            peft_params = list(peft_pipe.model.parameters())
            base_params = list(base_pipe.model.parameters())
            self.assertNotEqual(len(peft_params), len(base_params))  # Assert we actually loaded the adapter too
            _ = peft_pipe("Hello")

    def test_peft_add_adapter_with_state_dict(self):
        """
        Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
        add_adapter works as expected with a state_dict being passed.
        """
        from peft import LoraConfig

        dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)

        for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig(init_lora_weights=False)

                with self.assertRaises(ValueError):
                    model.load_adapter(peft_model_id=None)

                state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")

                check_torch_load_is_safe()
                dummy_state_dict = torch.load(state_dict_path, weights_only=True)

                model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=peft_config)
                with self.assertRaises(ValueError):
                    model.load_adapter(model.load_adapter(adapter_state_dict=dummy_state_dict, peft_config=None))
                self.assertTrue(self._check_lora_correctly_converted(model))

                # dummy generation
                _ = model.generate(input_ids=dummy_input)

    def test_peft_add_adapter_with_state_dict_low_cpu_mem_usage(self):
        """
        Check the usage of low_cpu_mem_usage, which is supported in PEFT >= 0.13.0
        """
        from peft import LoraConfig

        min_version_lcmu = "0.13.0"
        is_lcmu_supported = version.parse(importlib.metadata.version("peft")) >= version.parse(min_version_lcmu)

        for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig()
                state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
                check_torch_load_is_safe()
                dummy_state_dict = torch.load(state_dict_path, weights_only=True)

                # this should always work
                model.load_adapter(
                    adapter_state_dict=dummy_state_dict, peft_config=peft_config, low_cpu_mem_usage=False
                )

                if is_lcmu_supported:
                    # if supported, this should not raise an error
                    model.load_adapter(
                        adapter_state_dict=dummy_state_dict,
                        adapter_name="other",
                        peft_config=peft_config,
                        low_cpu_mem_usage=True,
                    )
                    # after loading, no meta device should be remaining
                    self.assertFalse(any((p.device.type == "meta") for p in model.parameters()))
                else:
                    err_msg = r"The version of PEFT you are using does not support `low_cpu_mem_usage` yet"
                    with self.assertRaisesRegex(ValueError, err_msg):
                        model.load_adapter(
                            adapter_state_dict=dummy_state_dict,
                            adapter_name="other",
                            peft_config=peft_config,
                            low_cpu_mem_usage=True,
                        )

    def test_peft_from_pretrained_hub_kwargs(self):
        """
        Tests different combinations of PEFT model + from_pretrained + hub kwargs
        """
        peft_model_id = "peft-internal-testing/tiny-opt-lora-revision"

        # This should not work
        with self.assertRaises(OSError):
            _ = AutoModelForCausalLM.from_pretrained(peft_model_id)

        adapter_kwargs = {"revision": "test"}

        # This should work
        model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        adapter_kwargs = {"revision": "main", "subfolder": "test_subfolder"}

        model = AutoModelForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

        model = OPTForCausalLM.from_pretrained(peft_model_id, adapter_kwargs=adapter_kwargs)
        self.assertTrue(self._check_lora_correctly_converted(model))

    def test_peft_from_pretrained_unexpected_keys_warning(self):
        """
        Test for warning when loading a PEFT checkpoint with unexpected keys.
        """
        from peft import LoraConfig

        logger = logging.get_logger("transformers.integrations.peft")

        for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig()
                state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
                check_torch_load_is_safe()
                dummy_state_dict = torch.load(state_dict_path, weights_only=True)

                # add unexpected key
                dummy_state_dict["foobar"] = next(iter(dummy_state_dict.values()))

                with CaptureLogger(logger) as cl:
                    model.load_adapter(
                        adapter_state_dict=dummy_state_dict, peft_config=peft_config, low_cpu_mem_usage=False
                    )

                msg = "Loading adapter weights from state_dict led to unexpected keys not found in the model: foobar"
                self.assertIn(msg, cl.out)

    def test_peft_from_pretrained_missing_keys_warning(self):
        """
        Test for warning when loading a PEFT checkpoint with missing keys.
        """
        from peft import LoraConfig

        logger = logging.get_logger("transformers.integrations.peft")

        for model_id, peft_model_id in zip(self.transformers_test_model_ids, self.peft_test_model_ids):
            for transformers_class in self.transformers_test_model_classes:
                model = transformers_class.from_pretrained(model_id).to(torch_device)

                peft_config = LoraConfig()
                state_dict_path = hf_hub_download(peft_model_id, "adapter_model.bin")
                check_torch_load_is_safe()
                dummy_state_dict = torch.load(state_dict_path, weights_only=True)

                # remove a key so that we have missing keys
                key = next(iter(dummy_state_dict.keys()))
                del dummy_state_dict[key]

                with CaptureLogger(logger) as cl:
                    model.load_adapter(
                        adapter_state_dict=dummy_state_dict,
                        peft_config=peft_config,
                        low_cpu_mem_usage=False,
                        adapter_name="other",
                    )

                # Here we need to adjust the key name a bit to account for PEFT-specific naming.
                # 1. Remove PEFT-specific prefix
                # If merged after dropping Python 3.8, we can use: key = key.removeprefix(peft_prefix)
                peft_prefix = "base_model.model."
                key = key[len(peft_prefix) :]
                # 2. Insert adapter name
                prefix, _, suffix = key.rpartition(".")
                key = f"{prefix}.other.{suffix}"

                msg = f"Loading adapter weights from state_dict led to missing keys in the model: {key}"
                self.assertIn(msg, cl.out)

    def test_peft_load_adapter_training_inference_mode_true(self):
        """
        By default, when loading an adapter, the whole model should be in eval mode and no parameter should have
        requires_grad=False.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)
                    model = transformers_class.from_pretrained(peft_model.config._name_or_path)
                    model.load_adapter(tmpdirname)
                    assert not any(p.requires_grad for p in model.parameters())
                    assert not any(m.training for m in model.modules())
                    del model

    def test_peft_load_adapter_training_inference_mode_false(self):
        """
        When passing is_trainable=True, the LoRA modules should be in training mode and their parameters should have
        requires_grad=True.
        """
        for model_id in self.peft_test_model_ids:
            for transformers_class in self.transformers_test_model_classes:
                peft_model = transformers_class.from_pretrained(model_id).to(torch_device)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    peft_model.save_pretrained(tmpdirname)
                    model = transformers_class.from_pretrained(peft_model.config._name_or_path)
                    model.load_adapter(tmpdirname, is_trainable=True)

                    for name, module in model.named_modules():
                        if len(list(module.children())):
                            # only check leaf modules
                            continue

                        if "lora_" in name:
                            assert module.training
                            assert all(p.requires_grad for p in module.parameters())
                        else:
                            assert not module.training
                            assert all(not p.requires_grad for p in module.parameters())

    def test_prefix_tuning_trainer_load_best_model_at_end_error(self):
        # Original issue: https://github.com/huggingface/peft/issues/2256
        # There is a potential error when using load_best_model_at_end=True with a prompt learning PEFT method. This is
        # because Trainer uses load_adapter under the hood but with some prompt learning methods, there is an
        # optimization on the saved model to remove parameters that are not required for inference, which in turn
        # requires a change to the model architecture. This is why load_adapter will fail in such cases and users should
        # instead set load_best_model_at_end=False and use PeftModel.from_pretrained. As this is not obvious, we now
        # intercept the error and add a helpful error message.
        # This test checks this error message. It also tests the "happy path" (i.e. no error) when using LoRA.
        from peft import LoraConfig, PrefixTuningConfig, TaskType, get_peft_model

        # create a small sequence classification dataset (binary classification)
        dataset = []
        for i, row in enumerate(os.__doc__.splitlines()):
            dataset.append({"text": row, "label": i % 2})
        ds_train = Dataset.from_list(dataset)
        ds_valid = ds_train
        datasets = DatasetDict(
            {
                "train": ds_train,
                "val": ds_valid,
            }
        )

        # tokenizer for peft-internal-testing/tiny-OPTForCausalLM-lora cannot be loaded, thus using
        # hf-internal-testing/tiny-random-OPTForCausalLM
        model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
        tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left", model_type="opt")

        def tokenize_function(examples):
            return tokenizer(examples["text"], max_length=128, truncation=True, padding="max_length")

        tokenized_datasets = datasets.map(tokenize_function, batched=True)
        # lora works, prefix-tuning is expected to raise an error
        peft_configs = {
            "lora": LoraConfig(task_type=TaskType.SEQ_CLS),
            "prefix-tuning": PrefixTuningConfig(
                task_type=TaskType.SEQ_CLS,
                inference_mode=False,
                prefix_projection=True,
                num_virtual_tokens=10,
            ),
        }

        for peft_type, peft_config in peft_configs.items():
            base_model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=2)
            base_model.config.pad_token_id = tokenizer.pad_token_id
            peft_model = get_peft_model(base_model, peft_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                training_args = TrainingArguments(
                    output_dir=tmpdirname,
                    num_train_epochs=3,
                    eval_strategy="epoch",
                    save_strategy="epoch",
                    load_best_model_at_end=True,
                )
                trainer = Trainer(
                    model=peft_model,
                    args=training_args,
                    train_dataset=tokenized_datasets["train"],
                    eval_dataset=tokenized_datasets["val"],
                )

                if peft_type == "lora":
                    # LoRA works with load_best_model_at_end
                    trainer.train()
                else:
                    # prefix tuning does not work, but at least users should get a helpful error message
                    msg = "When using prompt learning PEFT methods such as PREFIX_TUNING"
                    with self.assertRaisesRegex(RuntimeError, msg):
                        trainer.train()

    def test_peft_pipeline_no_warning(self):
        """
        Test to verify that the warning message "The model 'PeftModel' is not supported for text-generation"
        does not appear when using PeftModel with text-generation pipeline.
        """
        from peft import PeftModel

        from transformers import pipeline

        ADAPTER_PATH = "peft-internal-testing/tiny-OPTForCausalLM-lora"
        BASE_PATH = "hf-internal-testing/tiny-random-OPTForCausalLM"

        # Input text for testing
        text = "Who is a Elon Musk?"

        model = AutoModelForCausalLM.from_pretrained(
            BASE_PATH,
            device_map="auto",
        )
        tokenizer = AutoTokenizer.from_pretrained(BASE_PATH)

        lora_model = PeftModel.from_pretrained(
            model,
            ADAPTER_PATH,
            device_map="auto",
        )

        # Create pipeline with PEFT model while capturing log output
        # Check that the warning message is not present in the logs
        pipeline_logger = logging.get_logger("transformers.pipelines.base")
        with self.assertNoLogs(pipeline_logger, logging.ERROR):
            lora_generator = pipeline(
                task="text-generation",
                model=lora_model,
                tokenizer=tokenizer,
                max_length=10,
            )

            # Generate text to verify pipeline works
            _ = lora_generator(text)