File size: 8,246 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from queue import Empty
from threading import Thread
from unittest.mock import patch

import pytest

from transformers import (
    AsyncTextIteratorStreamer,
    AutoTokenizer,
    TextIteratorStreamer,
    TextStreamer,
    is_torch_available,
)
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from transformers.utils.logging import _get_library_root_logger

from ..test_modeling_common import ids_tensor


if is_torch_available():
    import torch

    from transformers import AutoModelForCausalLM


@require_torch
class StreamerTester(unittest.TestCase):
    def test_text_streamer_matches_non_streaming(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        greedy_text = tokenizer.decode(greedy_ids[0])

        with CaptureStdout() as cs:
            streamer = TextStreamer(tokenizer)
            model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
        # The greedy text should be printed to stdout, except for the final "\n" in the streamer
        streamer_text = cs.out[:-1]

        self.assertEqual(streamer_text, greedy_text)

    def test_iterator_streamer_matches_non_streaming(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        greedy_text = tokenizer.decode(greedy_ids[0])

        streamer = TextIteratorStreamer(tokenizer)
        generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        streamer_text = ""
        for new_text in streamer:
            streamer_text += new_text

        self.assertEqual(streamer_text, greedy_text)

    def test_text_streamer_skip_prompt(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        new_greedy_ids = greedy_ids[:, input_ids.shape[1] :]
        new_greedy_text = tokenizer.decode(new_greedy_ids[0])

        with CaptureStdout() as cs:
            streamer = TextStreamer(tokenizer, skip_prompt=True)
            model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
        # The greedy text should be printed to stdout, except for the final "\n" in the streamer
        streamer_text = cs.out[:-1]

        self.assertEqual(streamer_text, new_greedy_text)

    def test_text_streamer_decode_kwargs(self):
        # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
        # with actual models -- the dummy models' tokenizers are not aligned with their models, and
        # `skip_special_tokens=True` has no effect on them
        tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
        model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id

        root = _get_library_root_logger()
        with patch.object(root, "propagate", False):
            with CaptureStdout() as cs:
                streamer = TextStreamer(tokenizer, skip_special_tokens=True)
                model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer)

        # The prompt contains a special token, so the streamer should not print it. As such, the output text, when
        # re-tokenized, must only contain one token
        streamer_text = cs.out[:-1]  # Remove the final "\n"
        streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt")
        self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1))

    def test_iterator_streamer_timeout(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        streamer = TextIteratorStreamer(tokenizer, timeout=0.001)
        generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        # The streamer will timeout after 0.001 seconds, so an exception will be raised
        with self.assertRaises(Empty):
            streamer_text = ""
            for new_text in streamer:
                streamer_text += new_text


@require_torch
@pytest.mark.asyncio(loop_scope="class")
class AsyncStreamerTester(unittest.IsolatedAsyncioTestCase):
    async def test_async_iterator_streamer_matches_non_streaming(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
        greedy_text = tokenizer.decode(greedy_ids[0])

        streamer = AsyncTextIteratorStreamer(tokenizer)
        generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        streamer_text = ""
        async for new_text in streamer:
            streamer_text += new_text

        self.assertEqual(streamer_text, greedy_text)

    async def test_async_iterator_streamer_timeout(self):
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        model.config.eos_token_id = -1

        input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
        streamer = AsyncTextIteratorStreamer(tokenizer, timeout=0.001)
        generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        # The streamer will timeout after 0.001 seconds, so TimeoutError will be raised
        with self.assertRaises(TimeoutError):
            streamer_text = ""
            async for new_text in streamer:
                streamer_text += new_text