File size: 6,405 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from typing import Any, Callable

from transformers import is_torch_available, is_torch_xpu_available
from transformers.testing_utils import (
    TestCasePlus,
    backend_device_count,
    backend_torch_accelerator_module,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_torch_multi_accelerator,
    torch_device,
)
from transformers.utils import is_ccl_available, is_ipex_available


if is_torch_available():
    import functools

    import torch

    if is_torch_xpu_available():
        if is_ipex_available():
            import intel_extension_for_pytorch  # noqa: F401
        if is_ccl_available():
            import oneccl_bindings_for_pytorch  # noqa: F401
    import torch.distributed
    from torch.distributed._composable.fsdp import fully_shard, register_fsdp_forward_method
    from torch.distributed.device_mesh import init_device_mesh
    from torch.distributed.fsdp import FullyShardedDataParallel
    from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy

    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.models.gpt2.modeling_gpt2 import GPT2Block

    data = 4 * [
        "Hello world!",
        "The quick brown fox jumps over the lazy dog.",
    ]

    def manage_process_group(func: Callable[..., Any]) -> Callable[..., Any]:
        """Manage the creation and destruction of the distributed process group for the wrapped function."""

        def wrapped(*args: Any, **kwargs: Any) -> Any:
            device_count = backend_device_count(torch_device)
            torch.distributed.init_process_group(world_size=device_count)
            try:
                return func(*args, **kwargs)
            finally:
                torch.distributed.destroy_process_group()

        return wrapped

    @manage_process_group
    def fsdp_generate():
        torch_accelerator_module = backend_torch_accelerator_module(torch_device)
        torch_accelerator_module.set_device(device := torch.device(rank := torch.distributed.get_rank()))

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(device)

        fsdp_model = FullyShardedDataParallel(
            model,
            auto_wrap_policy=functools.partial(transformer_auto_wrap_policy, transformer_layer_cls={GPT2Block}),
            limit_all_gathers=True,
            use_orig_params=True,
        )

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        batch = tokenizer(data[rank], return_tensors="pt", return_attention_mask=True).to(device)

        with FullyShardedDataParallel.summon_full_params(fsdp_model):
            _ = fsdp_model.module.generate(
                input_ids=batch["input_ids"],
                attention_mask=batch["attention_mask"],
                max_length=30,
            )

    @manage_process_group
    def fsdp2_generate():
        torch_accelerator_module = backend_torch_accelerator_module(torch_device)
        torch_accelerator_module.set_device(device := torch.device(rank := torch.distributed.get_rank()))

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(device)

        mesh = init_device_mesh(device.type, (torch.distributed.get_world_size(),))
        for submodule in model.modules():
            if isinstance(submodule, GPT2Block):
                fully_shard(submodule, mesh=mesh)
        fully_shard(model, mesh=mesh)

        register_fsdp_forward_method(model, "generate")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        batch = tokenizer(data[rank], return_tensors="pt", return_attention_mask=True).to(device)

        _ = model.generate(
            input_ids=batch["input_ids"],
            attention_mask=batch["attention_mask"],
            max_length=30,
        )


class TestFSDPGeneration(TestCasePlus):
    @require_torch_multi_accelerator
    def test_fsdp_generate(self):
        device_count = backend_device_count(torch_device)
        distributed_args = f"""--nproc_per_node={device_count}
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_fsdp.py
        """.split()
        args = "--fsdp".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call

    @require_torch_multi_accelerator
    def test_fsdp2_generate(self):
        device_count = backend_device_count(torch_device)

        distributed_args = f"""--nproc_per_node={device_count}
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_fsdp.py
        """.split()
        args = "--fsdp2".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


if __name__ == "__main__":
    # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
    #
    # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/generation/test_fsdp.py --fsdp

    class CLIArgs(argparse.Namespace):
        fsdp: bool
        fsdp2: bool

    parser = argparse.ArgumentParser()
    group = parser.add_mutually_exclusive_group()
    group.add_argument("--fsdp", action="store_true")
    group.add_argument("--fsdp2", action="store_true")
    args = parser.parse_args(namespace=CLIArgs())

    if args.fsdp:
        fsdp_generate()
    elif args.fsdp2:
        fsdp2_generate()
    else:
        raise ValueError("Missing test selection")