File size: 39,023 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
import os
import tempfile
import unittest
import warnings
from huggingface_hub import HfFolder, create_pull_request
from parameterized import parameterized
from transformers import AutoConfig, GenerationConfig, WatermarkingConfig, is_torch_available
from transformers import logging as transformers_logging
if is_torch_available():
import torch
from transformers.generation import (
ClassifierFreeGuidanceLogitsProcessor,
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
GenerationMode,
HammingDiversityLogitsProcessor,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
MinPLogitsWarper,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
SuppressTokensAtBeginLogitsProcessor,
SuppressTokensLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
WatermarkLogitsProcessor,
)
from transformers.testing_utils import (
TOKEN,
CaptureLogger,
LoggingLevel,
TemporaryHubRepo,
is_staging_test,
torch_device,
)
class GenerationConfigTest(unittest.TestCase):
@parameterized.expand([(None,), ("foo.json",)])
def test_save_load_config(self, config_name):
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, config_name=config_name)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.temperature, 0.7)
self.assertEqual(loaded_config.length_penalty, 1.0)
self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k, 50)
self.assertEqual(loaded_config.max_length, 20)
self.assertEqual(loaded_config.max_time, None)
def test_from_model_config(self):
model_config = AutoConfig.from_pretrained("openai-community/gpt2")
generation_config_from_model = GenerationConfig.from_model_config(model_config)
default_generation_config = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(generation_config_from_model, default_generation_config)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id)
def test_update(self):
generation_config = GenerationConfig()
update_kwargs = {
"max_new_tokens": 1024,
"foo": "bar",
}
update_kwargs_copy = copy.deepcopy(update_kwargs)
unused_kwargs = generation_config.update(**update_kwargs)
# update_kwargs was not modified (no side effects)
self.assertEqual(update_kwargs, update_kwargs_copy)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens, 1024)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(unused_kwargs, {"foo": "bar"})
def test_kwarg_init(self):
"""Tests that we can overwrite attributes at `from_pretrained` time."""
default_config = GenerationConfig()
self.assertEqual(default_config.temperature, 1.0)
self.assertEqual(default_config.do_sample, False)
self.assertEqual(default_config.num_beams, 1)
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
bad_words_ids=[[1, 2, 3], [4, 5]],
)
self.assertEqual(config.temperature, 0.7)
self.assertEqual(config.do_sample, True)
self.assertEqual(config.num_beams, 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir)
loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0)
self.assertEqual(loaded_config.temperature, 1.0)
self.assertEqual(loaded_config.do_sample, True)
self.assertEqual(loaded_config.num_beams, 1) # default value
def test_validate(self):
"""
Tests that the `validate` method is working as expected. Note that `validate` is called at initialization time
"""
logger = transformers_logging.get_logger("transformers.generation.configuration_utils")
# A correct configuration will not throw any warning
with CaptureLogger(logger) as captured_logs:
GenerationConfig()
self.assertEqual(len(captured_logs.out), 0)
# Inconsequent but technically wrong configuration will throw a warning (e.g. setting sampling
# parameters with `do_sample=False`). May be escalated to an error in the future.
with CaptureLogger(logger) as captured_logs:
GenerationConfig(return_dict_in_generate=False, output_scores=True)
self.assertNotEqual(len(captured_logs.out), 0)
with CaptureLogger(logger) as captured_logs:
generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5) # store for later
self.assertNotEqual(len(captured_logs.out), 0)
# Expanding on the case above, we can update a bad configuration to get rid of the warning. Ideally,
# that is done by unsetting the parameter (i.e. setting it to None)
with CaptureLogger(logger) as captured_logs:
# BAD - 0.9 means it is still set, we should warn
generation_config_bad_temperature.update(temperature=0.9)
self.assertNotEqual(len(captured_logs.out), 0)
with CaptureLogger(logger) as captured_logs:
# CORNER CASE - 1.0 is the default, we can't detect whether it is set by the user or not, we shouldn't warn
generation_config_bad_temperature.update(temperature=1.0)
self.assertEqual(len(captured_logs.out), 0)
with CaptureLogger(logger) as captured_logs:
# OK - None means it is unset, nothing to warn about
generation_config_bad_temperature.update(temperature=None)
self.assertEqual(len(captured_logs.out), 0)
# Impossible sets of constraints/parameters will raise an exception
with self.assertRaises(ValueError):
GenerationConfig(do_sample=False, num_beams=1, num_return_sequences=2)
with self.assertRaises(ValueError):
# dummy constraint
GenerationConfig(do_sample=True, num_beams=2, constraints=["dummy"])
with self.assertRaises(ValueError):
GenerationConfig(do_sample=True, num_beams=2, force_words_ids=[[[1, 2, 3]]])
# Passing `generate()`-only flags to `validate` will raise an exception
with self.assertRaises(ValueError):
GenerationConfig(logits_processor="foo")
# Model-specific parameters will NOT raise an exception or a warning
with CaptureLogger(logger) as captured_logs:
GenerationConfig(foo="bar")
self.assertEqual(len(captured_logs.out), 0)
# By default we throw a short warning. However, we log with INFO level the details.
# Default: we don't log the incorrect input values, only a short summary. We explain how to get more details.
with LoggingLevel(logging.WARNING):
with CaptureLogger(logger) as captured_logs:
GenerationConfig(do_sample=False, temperature=0.5)
self.assertNotIn("0.5", captured_logs.out)
self.assertTrue(len(captured_logs.out) < 150) # short log
self.assertIn("Set `TRANSFORMERS_VERBOSITY=info` for more details", captured_logs.out)
# INFO level: we share the full deets
with LoggingLevel(logging.INFO):
with CaptureLogger(logger) as captured_logs:
GenerationConfig(do_sample=False, temperature=0.5)
self.assertIn("0.5", captured_logs.out)
self.assertTrue(len(captured_logs.out) > 400) # long log
self.assertNotIn("Set `TRANSFORMERS_VERBOSITY=info` for more details", captured_logs.out)
# Finally, we can set `strict=True` to raise an exception on what would otherwise be a warning.
generation_config = GenerationConfig()
generation_config.temperature = 0.5
generation_config.do_sample = False
with self.assertRaises(ValueError):
generation_config.validate(strict=True)
def test_refuse_to_save(self):
"""Tests that we refuse to save a generation config that fails validation."""
# setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that
# is caught, doesn't save, and raises an exception
config = GenerationConfig()
config.temperature = 0.5
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(ValueError) as exc:
config.save_pretrained(tmp_dir)
self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
self.assertTrue("`temperature` is set to `0.5`" in str(exc.exception))
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is
# caught, doesn't save, and raises a warning
config = GenerationConfig()
config.num_return_sequences = 2
with tempfile.TemporaryDirectory() as tmp_dir:
with self.assertRaises(ValueError) as exc:
config.save_pretrained(tmp_dir)
self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
self.assertTrue(
"Greedy methods without beam search do not support `num_return_sequences` different than 1"
in str(exc.exception)
)
self.assertTrue(len(os.listdir(tmp_dir)) == 0)
# Final check: no logs at warning level/warnings/exceptions thrown if it is correct, and file is saved.
config = GenerationConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
# Catch warnings
with warnings.catch_warnings(record=True) as captured_warnings:
# Catch logs (up to WARNING level, the default level)
with LoggingLevel(logging.WARNING):
logger = transformers_logging.get_logger("transformers.generation.configuration_utils")
with CaptureLogger(logger) as captured_logs:
config.save_pretrained(tmp_dir)
self.assertEqual(len(captured_warnings), 0)
self.assertEqual(len(captured_logs.out), 0)
self.assertEqual(len(os.listdir(tmp_dir)), 1)
def test_generation_mode(self):
"""Tests that the `get_generation_mode` method is working as expected."""
config = GenerationConfig()
self.assertEqual(config.get_generation_mode(), GenerationMode.GREEDY_SEARCH)
config = GenerationConfig(do_sample=True)
self.assertEqual(config.get_generation_mode(), GenerationMode.SAMPLE)
config = GenerationConfig(num_beams=2)
self.assertEqual(config.get_generation_mode(), GenerationMode.BEAM_SEARCH)
config = GenerationConfig(top_k=10, do_sample=False, penalty_alpha=0.6)
self.assertEqual(config.get_generation_mode(), GenerationMode.CONTRASTIVE_SEARCH)
config = GenerationConfig()
self.assertEqual(config.get_generation_mode(assistant_model="foo"), GenerationMode.ASSISTED_GENERATION)
def test_static_cache_without_cache_config(self):
"""Regression test for #35026 -- static cache should work without a cache config."""
config = GenerationConfig(cache_implementation="static")
self.assertEqual(config.cache_implementation, "static")
self.assertEqual(config.cache_config, None)
class GenerationConfigSerializationTest(unittest.TestCase):
def test_serialize_generation_sequence_bias(self):
"""Tests that GenerationConfig is serialized and SequenceBiasLogitsProcessor is initialized with sequence_bias parameter"""
generation_config = GenerationConfig()
sequence_bias = [[[45, 67], -0.6], [[89], 1.2]]
generation_config.sequence_bias = sequence_bias
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.sequence_bias, sequence_bias)
expected_sequence_bias = {(45, 67): -0.6, (89,): 1.2}
bias_logits_processor = SequenceBiasLogitsProcessor(new_config.sequence_bias)
self.assertDictEqual(bias_logits_processor.sequence_bias, expected_sequence_bias)
def test_serialize_generation_min_length_eos_token(self):
"""Tests that GenerationConfig is serialized and MinLengthLogitsProcessor is initialized with min_length and eos_token_id"""
eos_token_id = 0
min_length = 10
generation_config = GenerationConfig(min_length=min_length, eos_token_id=eos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_length, min_length)
self.assertEqual(new_config.eos_token_id, eos_token_id)
min_dist_processor = MinLengthLogitsProcessor(
min_length=new_config.min_length, eos_token_id=new_config.eos_token_id
)
self.assertEqual(min_dist_processor.min_length, min_length)
self.assertEqual(min_dist_processor.eos_token_id, eos_token_id)
def test_serialize_generation_min_new_tokens(self):
"""Tests that GenerationConfig is serialized and MinNewTokensLengthLogitsProcessor is initialized with min_new_tokens"""
eos_token_id = 0
min_new_tokens = 5
prompt_length_to_skip = 2
generation_config = GenerationConfig(min_new_tokens=min_new_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_new_tokens, min_new_tokens)
min_new_tokens_processor = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=prompt_length_to_skip,
min_new_tokens=new_config.min_new_tokens,
eos_token_id=eos_token_id,
)
self.assertEqual(min_new_tokens_processor.min_new_tokens, min_new_tokens)
def test_serialize_generation_temperature(self):
"""Tests that GenerationConfig is serialized and TemperatureLogitsWarper is initialized with temperature"""
temperature = 2.0
generation_config = GenerationConfig(temperature=temperature, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.temperature, temperature)
temperature_logits_warper = TemperatureLogitsWarper(temperature=new_config.temperature)
self.assertEqual(temperature_logits_warper.temperature, temperature)
def test_serialize_generation_repetition_penalty(self):
"""Tests that GenerationConfig is serialized and RepetitionPenaltyLogitsProcessor is initialized with repetition_penalty"""
penalty = 2.0
generation_config = GenerationConfig(repetition_penalty=penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.repetition_penalty, penalty)
rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=new_config.repetition_penalty)
self.assertEqual(rep_penalty_proc.penalty, penalty)
def test_serialize_generation_encoder_repetition_penalty(self):
"""Tests that GenerationConfig is serialized and EncoderRepetitionPenaltyLogitsProcessor is initialized with penalty and input_ids"""
penalty = 2.0
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
generation_config = GenerationConfig(encoder_repetition_penalty=penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.encoder_repetition_penalty, penalty)
rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(
penalty=new_config.encoder_repetition_penalty, encoder_input_ids=input_ids
)
self.assertEqual(rep_penalty_proc.penalty, 1 / penalty)
torch.testing.assert_close(rep_penalty_proc.encoder_input_ids, input_ids)
def test_serialize_generation_top_p(self):
"""Tests that GenerationConfig is serialized and TopPLogitsWarper is initialized with top_p"""
top_p = 0.8
generation_config = GenerationConfig(top_p=top_p, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.top_p, top_p)
rep_penalty_proc = TopPLogitsWarper(top_p=new_config.top_p)
self.assertEqual(rep_penalty_proc.top_p, top_p)
def test_serialize_generation_top_k(self):
"""Tests that GenerationConfig is serialized and TopKLogitsWarper is initialized with top_k"""
top_k = 2
generation_config = GenerationConfig(top_k=top_k, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.top_k, top_k)
top_k_logits_wrap = TopKLogitsWarper(top_k=new_config.top_k)
self.assertEqual(top_k_logits_wrap.top_k, top_k)
def test_serialize_generation_min_p(self):
"""Tests that GenerationConfig is serialized and MinPLogitsWarper is initialized with min_p"""
min_p = 0.8
generation_config = GenerationConfig(min_p=min_p, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.min_p, min_p)
min_k_logits_wrap = MinPLogitsWarper(min_p=new_config.min_p)
self.assertEqual(min_k_logits_wrap.min_p, min_p)
def test_serialize_generation_typical_p(self):
"""Tests that GenerationConfig is serialized and TypicalLogitsWarper is initialized with mass"""
mass = 0.8
generation_config = GenerationConfig(typical_p=mass, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.typical_p, mass)
typical_p_logits_wrap = TypicalLogitsWarper(mass=new_config.typical_p)
self.assertEqual(typical_p_logits_wrap.mass, mass)
def test_serialize_generation_epsilon_cutoff(self):
"""Tests that GenerationConfig is serialized and EpsilonLogitsWarper is initialized with epsilon"""
epsilon = 0.8
generation_config = GenerationConfig(epsilon_cutoff=epsilon, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.epsilon_cutoff, epsilon)
epsilon_logits_wrap = EpsilonLogitsWarper(epsilon=new_config.epsilon_cutoff)
self.assertEqual(epsilon_logits_wrap.epsilon, epsilon)
def test_serialize_generation_eta_cutoff(self):
"""Tests that GenerationConfig is serialized and EtaLogitsWarper is initialized with epsilon"""
epsilon = 0.8
generation_config = GenerationConfig(eta_cutoff=epsilon, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.eta_cutoff, epsilon)
eta_logits_wrap = EtaLogitsWarper(epsilon=new_config.eta_cutoff)
self.assertEqual(eta_logits_wrap.epsilon, epsilon)
def test_serialize_generation_ngram_size(self):
"""Tests that GenerationConfig is serialized and NoRepeatNGramLogitsProcessor is initialized with ngram_size"""
ngram_size = 2
generation_config = GenerationConfig(no_repeat_ngram_size=ngram_size, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.no_repeat_ngram_size, ngram_size)
no_repeat_ngram_proc = NoRepeatNGramLogitsProcessor(ngram_size=new_config.no_repeat_ngram_size)
self.assertEqual(no_repeat_ngram_proc.ngram_size, ngram_size)
def test_serialize_generation_encoder_ngram_size(self):
"""Tests that GenerationConfig is serialized and EncoderNoRepeatNGramLogitsProcessor is initialized with ngram_size"""
ngram_size = 2
input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
generation_config = GenerationConfig(encoder_no_repeat_ngram_size=ngram_size, do_sample=True)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.encoder_no_repeat_ngram_size, ngram_size)
encoder_no_repeat_ngram_proc = EncoderNoRepeatNGramLogitsProcessor(
encoder_ngram_size=new_config.encoder_no_repeat_ngram_size, encoder_input_ids=input_ids
)
self.assertEqual(encoder_no_repeat_ngram_proc.ngram_size, ngram_size)
def test_serialize_generation_bad_words_ids(self):
"""Tests that GenerationConfig is serialized and NoBadWordsLogitsProcessor is initialized with bad_words_ids"""
bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
generation_config = GenerationConfig(bad_words_ids=bad_word_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.bad_words_ids, bad_word_tokens)
no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=new_config.bad_words_ids)
self.assertSequenceEqual(no_bad_words_dist_proc.bad_word_ids, bad_word_tokens)
def test_serialize_generation_num_beams(self):
"""Tests that GenerationConfig is serialized and PrefixConstrainedLogitsProcessor is initialized with num_beams"""
num_beams = 1
def prefix_allowed_tokens_fn(batch_id, inputs_ids):
return [[0, 1], [2, 3]][batch_id]
generation_config = GenerationConfig(num_beams=num_beams)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.num_beams, num_beams)
prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(
prefix_allowed_tokens_fn, num_beams=new_config.num_beams
)
self.assertEqual(prefix_constrained_logits_proc._num_beams, num_beams)
def test_serialize_generation_diversity_penalty_and_num_bean_groups(self):
"""Tests that GenerationConfig is serialized and HammingDiversityLogitsProcessor is initialized with diversity_penalty_and_num_bean_groups"""
num_beams = 2
num_beam_groups = 2
diversity_penalty = 1.0
generation_config = GenerationConfig(
num_beams=num_beams, diversity_penalty=diversity_penalty, num_beam_groups=num_beam_groups
)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.num_beams, num_beams)
self.assertEqual(new_config.diversity_penalty, diversity_penalty)
self.assertEqual(new_config.num_beam_groups, num_beam_groups)
diversity_logits_processor = HammingDiversityLogitsProcessor(
diversity_penalty=new_config.diversity_penalty,
num_beams=new_config.num_beams,
num_beam_groups=new_config.num_beam_groups,
)
self.assertEqual(diversity_logits_processor._num_beams, num_beams)
self.assertEqual(diversity_logits_processor._diversity_penalty, diversity_penalty)
self.assertEqual(diversity_logits_processor._num_sub_beams, num_beams // num_beam_groups)
def test_serialize_generation_bos_token_id(self):
"""Tests that GenerationConfig is serialized and ForcedBOSTokenLogitsProcessor is initialized with bos_token_id"""
bos_token_id = 0
generation_config = GenerationConfig(bos_token_id=bos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.bos_token_id, bos_token_id)
logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=new_config.bos_token_id)
self.assertEqual(logits_processor.bos_token_id, bos_token_id)
def test_serialize_generation_eos_token_id(self):
"""Tests that GenerationConfig is serialized and ForcedEOSTokenLogitsProcessor is initialized with eos_token_id"""
eos_token_id = 0
max_length = 5
generation_config = GenerationConfig(eos_token_id=eos_token_id)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.eos_token_id, eos_token_id)
logits_processor = ForcedEOSTokenLogitsProcessor(
max_length=max_length, eos_token_id=new_config.eos_token_id, device=torch_device
)
self.assertEqual(logits_processor.eos_token_id, eos_token_id)
def test_serialize_generation_exponential_decay_length_penalty(self):
"""Tests that GenerationConfig is serialized and ExponentialDecayLengthPenalty is initialized with regulation_start and regulation_factor"""
eos_token_id = 0
penalty_start = 5
penalty_factor = 1.1
input_ids_seq_length = 10
exponential_decay_length_penalty = (penalty_start, penalty_factor)
generation_config = GenerationConfig(exponential_decay_length_penalty=exponential_decay_length_penalty)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.exponential_decay_length_penalty, [penalty_start, penalty_factor])
exponential_decay_processor = ExponentialDecayLengthPenalty(
exponential_decay_length_penalty=new_config.exponential_decay_length_penalty,
eos_token_id=eos_token_id,
input_ids_seq_length=input_ids_seq_length,
)
self.assertEqual(
exponential_decay_processor.regulation_start, exponential_decay_length_penalty[0] + input_ids_seq_length
)
self.assertEqual(exponential_decay_processor.regulation_factor, exponential_decay_length_penalty[1])
def test_serialize_generation_begin_suppress_tokens(self):
"""Tests that GenerationConfig is serialized and SuppressTokensAtBeginLogitsProcessor is initialized with begin_suppress_token and begin_index"""
begin_suppress_tokens = [220, 50256]
begin_index = 0
generation_config = GenerationConfig(begin_suppress_tokens=begin_suppress_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.begin_suppress_tokens, begin_suppress_tokens)
suppress_processor = SuppressTokensAtBeginLogitsProcessor(
begin_suppress_tokens=new_config.begin_suppress_tokens, begin_index=begin_index
)
self.assertSequenceEqual(suppress_processor.begin_suppress_tokens, begin_suppress_tokens)
self.assertEqual(suppress_processor.begin_index, begin_index)
def test_serialize_generation_suppress_tokens(self):
"""Tests that GenerationConfig is serialized and SuppressTokensLogitsProcessor is initialized with suppress_token"""
suppress_tokens = [220, 50256]
generation_config = GenerationConfig(suppress_tokens=suppress_tokens)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertSequenceEqual(new_config.suppress_tokens, suppress_tokens)
suppress_processor = SuppressTokensLogitsProcessor(suppress_tokens=new_config.suppress_tokens)
self.assertSequenceEqual(suppress_processor.suppress_tokens, suppress_tokens)
def test_serialize_generation_guidance_scale(self):
"""Tests that GenerationConfig is serialized and ClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale"""
guidance_scale = 2.0
generation_config = GenerationConfig(guidance_scale=guidance_scale)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.guidance_scale, guidance_scale)
classifier_processor = ClassifierFreeGuidanceLogitsProcessor(guidance_scale=new_config.guidance_scale)
self.assertEqual(classifier_processor.guidance_scale, guidance_scale)
def test_serialize_generation_guidance_scale_unbatched(self):
"""Tests that GenerationConfig is serialized and UnbatchedClassifierFreeGuidanceLogitsProcessor is initialized with guidance_scale"""
guidance_scale = 2.0
input_ids = torch.LongTensor([[0]])
generation_config = GenerationConfig(guidance_scale=guidance_scale)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.guidance_scale, guidance_scale)
cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(new_config.guidance_scale, {}, input_ids)
self.assertEqual(cfg.guidance_scale, guidance_scale)
def test_serialize_generation_watermarking_config(self):
"""Tests that GenerationConfig is serialized and WatermarkLogitsProcessor is initialized with WatermarkingConfig parameters"""
vocab_size = 20
bias = 2.0
greenlist_ratio = 0.5
hashing_key = 10
seeding_scheme = "lefthash"
context_width = 10
watermarking_config = WatermarkingConfig(
bias=bias,
greenlist_ratio=greenlist_ratio,
hashing_key=hashing_key,
seeding_scheme=seeding_scheme,
context_width=context_width,
)
generation_config = GenerationConfig(watermarking_config=watermarking_config)
with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
generation_config.save_pretrained(tmp_dir)
new_config = GenerationConfig.from_pretrained(tmp_dir)
self.assertEqual(new_config.watermarking_config.bias, bias)
self.assertEqual(new_config.watermarking_config.greenlist_ratio, greenlist_ratio)
self.assertEqual(new_config.watermarking_config.hashing_key, hashing_key)
self.assertEqual(new_config.watermarking_config.seeding_scheme, seeding_scheme)
self.assertEqual(new_config.watermarking_config.context_width, context_width)
watermark = WatermarkLogitsProcessor(
vocab_size=vocab_size,
device=torch_device,
greenlist_ratio=new_config.watermarking_config.greenlist_ratio,
bias=new_config.watermarking_config.bias,
hashing_key=new_config.watermarking_config.hashing_key,
seeding_scheme=new_config.watermarking_config.seeding_scheme,
context_width=new_config.watermarking_config.context_width,
)
self.assertEqual(watermark.bias, bias)
self.assertEqual(watermark.greenlist_size, int(vocab_size * greenlist_ratio))
self.assertEqual(watermark.hash_key, hashing_key)
self.assertEqual(watermark.seeding_scheme, seeding_scheme)
self.assertEqual(watermark.context_width, context_width)
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
def test_push_to_hub(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_via_save_pretrained(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization_via_save_pretrained(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_on_pr_revision(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
# create a PR
pr = create_pull_request(repo_id=tmp_repo.repo_id, title="Test PR", token=self._token)
revision = f"refs/pr/{pr.num}"
# push to PR ref
config = GenerationConfig(
do_sample=True,
temperature=0.7,
length_penalty=1.0,
)
config.push_to_hub(tmp_repo.repo_id, token=self._token, revision=revision)
# load from PR ref
new_config = GenerationConfig.from_pretrained(tmp_repo.repo_id, revision=revision)
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
|