File size: 15,054 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gc
import unittest
import weakref
from unittest.mock import MagicMock

import torch

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
from transformers.generation.candidate_generator import (
    AssistantToTargetTranslator,
    AssistantVocabTranslatorCache,
    UniversalSpeculativeDecodingGenerator,
)
from transformers.testing_utils import require_torch, torch_device


@require_torch
class TestAssistantToTargetTranslator(unittest.TestCase):
    def setUp(self):
        # Create mock tokenizers with predefined vocabularies
        self.target_tokenizer = MagicMock()
        self.assistant_tokenizer = MagicMock()
        self.assistant_model = MagicMock(device=torch_device)

        # Define mock vocabularies for the tokenizers
        self.target_vocab = {"hello": 0, "world": 1, "foo": 2, "bar": 3}
        self.assistant_vocab = {"hello": 0, "world": 1, "foo": 2, "baz": 4}

        self.target_tokenizer.get_vocab.return_value = self.target_vocab
        self.assistant_tokenizer.get_vocab.return_value = self.assistant_vocab
        self.target_vocab_size = 6

        # Instantiate the class under test
        self.translator = AssistantToTargetTranslator(
            target_tokenizer=self.target_tokenizer,
            assistant_tokenizer=self.assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )

    def test_get_assistant_to_target_input_ids(self):
        """Test the mapping from assistant tokens to target tokens."""
        expected_mapping = [0, 1, 2, self.translator.SUPPRESS_TOKEN_ID, self.translator.SUPPRESS_TOKEN_ID]
        actual_mapping = self.translator._assistant_to_target_input_ids.tolist()
        self.assertEqual(actual_mapping, expected_mapping)

    def test_get_suppress_input_ids(self):
        """Test the suppression of assistant input IDs not present in the target vocabulary."""
        expected_suppress_ids = [3, 4]
        actual_suppress_ids = self.translator._get_suppress_input_ids().tolist()
        self.assertEqual(actual_suppress_ids, expected_suppress_ids)

    def test_get_target_ids(self):
        """Test the translation of assistant candidate IDs to target candidate IDs."""
        assistant_input_ids = torch.LongTensor([[0, 1, 2]]).to(
            self.assistant_model.device
        )  # 'hello world foo' in assistant tokenizer
        target_input_ids = torch.LongTensor([[0, 1, 2]]).to(
            self.assistant_model.device
        )  # 'hello world foo' in target tokenizer
        assistant_candidate_ids = torch.LongTensor([[0, 1, 2, 4]]).to(
            self.assistant_model.device
        )  # 'hello world foo baz' in assistant tokenizer

        expected_target_ids = torch.LongTensor(
            [[0, 1, 2, self.translator.SUPPRESS_TOKEN_ID]]
        ).to(
            self.assistant_model.device
        )  # 'hello world foo baz' in target tokenizer (baz is mapped to self.translator.suppress_tokens_id since it does not exist in target vocab)

        actual_target_ids = self.translator.get_target_ids(
            assistant_input_ids, target_input_ids, assistant_candidate_ids
        )
        self.assertTrue(torch.equal(actual_target_ids, expected_target_ids))

    def test_get_target_logits(self):
        """Test the conversion of assistant logits to target logits."""
        # Assistant logits for IDs 0, 1, 2
        assistant_logits = torch.FloatTensor([[[0.1, 0.2, 0.3, 0.4, self.translator.FILTER_VALUE]]]).to(
            self.assistant_model.device
        )  # Shape (1, 1, 5)

        # Expected target logits (target_vocab_size = 4)
        expected_target_logits = torch.full((1, 1, self.target_vocab_size), self.translator.FILTER_VALUE).to(
            self.assistant_model.device
        )
        expected_target_logits[0, 0, 0] = 0.1  # 'hello'
        expected_target_logits[0, 0, 1] = 0.2  # 'world'
        expected_target_logits[0, 0, 2] = 0.3  # 'foo'
        # The 'bar' token in target vocab remains at -inf

        actual_target_logits = self.translator.get_target_logits(assistant_logits)
        self.assertTrue(torch.equal(actual_target_logits, expected_target_logits))


class MockTokenizer:
    """A simple mock tokenizer class that supports weak references."""

    def __init__(self, vocab=None):
        self._vocab = vocab or {}

    def get_vocab(self):
        return self._vocab

    def __call__(self, text, add_special_tokens=True):
        # Mock implementation of the __call__ method
        tokens = text.split()
        input_ids = [self._vocab.get(token, 0) for token in tokens]
        return {"input_ids": input_ids}


@require_torch
class TestAssistantVocabTranslatorCache(unittest.TestCase):
    def setUp(self):
        # Clear the cache before each test
        AssistantVocabTranslatorCache._cache.clear()
        # Create mock tokenizers with different vocabularies
        self.target_tokenizer = MockTokenizer({"hello": 0, "world": 1})
        self.assistant_tokenizer = MockTokenizer({"hello": 0, "world": 1, "foo": 2})
        self.other_target_tokenizer = MockTokenizer({"foo": 2, "bar": 3})
        self.other_assistant_tokenizer = MockTokenizer({"baz": 4, "qux": 5})
        self.assistant_model = MagicMock(device=torch_device)

        self.target_vocab_size = 6

    def test_same_instance_for_same_tokenizers(self):
        """Test that the same translator is returned for the same tokenizers."""
        translator1 = AssistantVocabTranslatorCache.get_translator(
            self.target_tokenizer,
            self.assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )
        translator2 = AssistantVocabTranslatorCache.get_translator(
            self.target_tokenizer,
            self.assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )
        self.assertIs(translator1, translator2, "Translators should be cached and identical")

    def test_different_instances_for_different_tokenizers(self):
        """Test that different tokenizers produce different translators."""
        translator1 = AssistantVocabTranslatorCache.get_translator(
            self.target_tokenizer,
            self.assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )
        translator2 = AssistantVocabTranslatorCache.get_translator(
            self.other_target_tokenizer,
            self.other_assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )
        self.assertIsNot(translator1, translator2, "Translators should differ for different tokenizers")

    def test_cache_with_weakref_key(self):
        """Ensure that the cache uses weak references as keys."""
        initial_cache_size = len(AssistantVocabTranslatorCache._cache)
        target_tokenizer = MockTokenizer({"hello": 0})
        assistant_tokenizer = MockTokenizer({"hello": 0})

        # Store translator in a local variable to avoid it being kept alive
        translator = AssistantVocabTranslatorCache.get_translator(
            target_tokenizer,
            assistant_tokenizer,
            target_vocab_size=self.target_vocab_size,
            assistant_model=self.assistant_model,
            assistant_prune_lm_head=False,
        )
        self.assertEqual(len(AssistantVocabTranslatorCache._cache), initial_cache_size + 1)

        # Delete all strong references
        del target_tokenizer
        del assistant_tokenizer
        del translator

        # Force garbage collection
        gc.collect()

        # Call cleanup to remove dead entries
        AssistantVocabTranslatorCache.cleanup()

        # The cache size remains increased due to strong references
        self.assertEqual(len(AssistantVocabTranslatorCache._cache), initial_cache_size + 1)

    def test_weakref_cache_cleanup(self):
        """Test that the cache cleans up translators when tokenizers are garbage collected."""

        def create_translator():
            target_tokenizer = MockTokenizer({"hello": 0})
            assistant_tokenizer = MockTokenizer({"hello": 0})
            translator = AssistantVocabTranslatorCache.get_translator(
                target_tokenizer,
                assistant_tokenizer,
                target_vocab_size=self.target_vocab_size,
                assistant_model=self.assistant_model,
                assistant_prune_lm_head=False,
            )
            # Create weak references before returning
            refs = (weakref.ref(translator), weakref.ref(target_tokenizer), weakref.ref(assistant_tokenizer))
            # Remove strong references inside the function
            del target_tokenizer
            del assistant_tokenizer
            del translator
            return refs

        translator_ref, target_ref, assistant_ref = create_translator()

        # Force garbage collection
        gc.collect()

        # Call cleanup to remove dead entries
        AssistantVocabTranslatorCache.cleanup()

        # The tokenizers and translator are not garbage collected due to strong references
        self.assertIsNotNone(target_ref(), "Target tokenizer should still be alive due to strong references")
        self.assertIsNotNone(assistant_ref(), "Assistant tokenizer should still be alive due to strong references")
        self.assertIsNotNone(translator_ref(), "Translator should still be alive due to strong references")


@require_torch
class TestUniversalSpeculativeDecoding(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.target_name = "hf-internal-testing/tiny-random-LlamaForCausalLM"
        cls.assistant_name = "hf-internal-testing/tiny-random-PhiForCausalLM"

    def setUp(self):
        self.target_tokenizer = AutoTokenizer.from_pretrained(self.target_name)
        self.target_config = AutoConfig.from_pretrained(self.target_name)
        self.assistant_model = AutoModelForCausalLM.from_pretrained(self.assistant_name).to(torch_device)
        self.assistant_tokenizer = AutoTokenizer.from_pretrained(self.assistant_name)

        self.generation_config = GenerationConfig()

        # Ensure required tokens exist
        if self.target_tokenizer.pad_token_id is None:
            self.target_tokenizer.pad_token_id = self.target_tokenizer.eos_token_id
        if self.target_tokenizer.bos_token_id is None:
            self.target_tokenizer.bos_token_id = self.target_tokenizer.eos_token_id
        if self.assistant_tokenizer.pad_token_id is None:
            self.assistant_tokenizer.pad_token_id = self.assistant_tokenizer.eos_token_id
        if self.assistant_tokenizer.bos_token_id is None:
            self.assistant_tokenizer.bos_token_id = self.assistant_tokenizer.eos_token_id

        self.input_ids = torch.tensor([[1, 2, 3]]).to(torch_device)
        self.model_kwargs = {
            "attention_mask": torch.ones_like(self.input_ids).to(torch_device),
        }
        atm_translator = AssistantVocabTranslatorCache.get_translator(
            target_tokenizer=self.target_tokenizer,
            assistant_tokenizer=self.assistant_tokenizer,
            assistant_model=self.assistant_model,
            target_vocab_size=self.target_config.vocab_size,
        )
        self.generator = UniversalSpeculativeDecodingGenerator(
            input_ids=self.input_ids,
            assistant_model=self.assistant_model,
            target_tokenizer=self.target_tokenizer,
            assistant_tokenizer=self.assistant_tokenizer,
            generation_config=self.generation_config,
            model_kwargs=self.model_kwargs,
            atm_translator=atm_translator,
        )

    def test_basic_generation(self):
        """Test basic speculative decoding works"""
        input_text = "The quick brown fox"
        input_ids = self.target_tokenizer.encode(input_text, return_tensors="pt")
        self.generator.input_ids = input_ids
        candidates, scores = self.generator.get_candidates(input_ids)

        self.assertIsNotNone(candidates)
        self.assertIsNotNone(scores)
        self.assertTrue(torch.is_tensor(candidates))
        self.assertTrue(torch.is_tensor(scores))

    def test_mismatched_vocabularies(self):
        """Test handling of mismatched vocabularies between models"""
        # Create input with tokens present in main but not assistant vocab
        # Find a token that is not in the assistant tokenizer but in
        # the main tokenizer.
        missing_token = next(
            token
            for token in self.target_tokenizer.get_vocab()
            if token not in self.assistant_tokenizer.get_vocab()
            and token not in self.target_tokenizer.all_special_tokens
            and "reserved_" not in token
        )
        input_ids = torch.tensor([[self.target_tokenizer.convert_tokens_to_ids(missing_token)]])
        self.generator.input_ids = input_ids
        candidates, _ = self.generator.get_candidates(input_ids)
        self.assertIsNotNone(candidates)

    def test_speculation_depth(self):
        """Test different speculation depths"""
        input_ids = self.target_tokenizer.encode("Test text", return_tensors="pt")
        self.generator.input_ids = input_ids

        for depth in [1, 8, 17]:
            self.generator.num_assistant_tokens = depth
            candidates, _ = self.generator.get_candidates(input_ids)
            self.assertLessEqual(candidates.shape[1] - input_ids.shape[1], depth)

    def test_device_consistency(self):
        """Test handling of inputs on different devices"""
        input_ids = torch.tensor([[1, 2, 3]]).to(torch_device)
        self.generator.input_ids = input_ids
        candidates, _ = self.generator.get_candidates(input_ids)
        self.assertEqual(candidates.device, input_ids.device)

    def test_usd_vs_vanilla_sampling(cls):
        """Test that USD matches vanilla sampling with temperature set to nearly 0"""
        prompt = "Test text"

        pipe_vanilla = pipeline(
            "text-generation",
            model=cls.target_name,
        )
        pipe_vanilla_output = pipe_vanilla(prompt, max_new_tokens=5, do_sample=False)
        vanilla_text = pipe_vanilla_output[0]["generated_text"]

        pipe_usd = pipeline(
            "text-generation",
            model=cls.target_name,
            assistant_model=cls.assistant_name,
        )
        pipe_usd_output = pipe_usd(prompt, max_new_tokens=5, do_sample=True, temperature=1e-9)  # Nearly 0 temperature
        usd_text = pipe_usd_output[0]["generated_text"]

        # Assert that the outputs match
        cls.assertEqual(usd_text, vanilla_text)