File size: 20,250 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
from inspect import signature

import pytest
from parameterized import parameterized

from transformers import set_seed
from transformers.testing_utils import (
    is_flaky,
    require_flash_attn,
    require_torch_gpu,
    slow,
)

from .test_configuration_common import ConfigTester
from .test_modeling_common import (
    GenerationTesterMixin,
    ModelTesterMixin,
    ids_tensor,
    is_torch_available,
    require_torch,
    torch_device,
)
from .test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch


class CausalLMModelTester:
    _required_attributes = ("base_model_class", "config_class", "causal_lm_class")
    forced_config_args = [
        "pad_token_id"
    ]  # Arguments that should be passed to the config class even if not in its signature
    config_class = None
    base_model_class = None
    causal_lm_class = None
    sequence_classification_class = None
    token_classification_class = None
    question_answering_class = None

    def _verify_model_attributes(self):
        for required_attribute in self._required_attributes:
            if getattr(self, required_attribute) is None:
                raise ValueError(
                    f"You have inherited from CausalLMModelTester but did not set the {required_attribute} attribute."
                )

    @property
    def all_model_classes(self):
        return [
            model_class
            for model_class in (
                self.base_model_class,
                self.causal_lm_class,
                self.sequence_classification_class,
                self.token_classification_class,
            )
            if model_class is not None
        ]

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=2,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        is_decoder=False,
        scope=None,
        expert_interval=1,
        moe_intermediate_size=12,
        shared_expert_intermediate_size=36,
        shared_expert_gate=True,
        num_experts_per_tok=2,
        num_experts=8,
        mamba_n_groups=1,
        mamba_n_heads=16,
        mamba_d_state=16,
        mamba_d_conv=4,
        mamba_expand=2,
        mamba_chunk_size=16,
    ):
        self._verify_model_attributes()
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.scope = scope
        self.head_dim = self.hidden_size // self.num_attention_heads
        self.is_decoder = is_decoder
        self.expert_interval = expert_interval
        self.moe_intermediate_size = moe_intermediate_size
        self.shared_expert_intermediate_size = shared_expert_intermediate_size
        self.shared_expert_gate = shared_expert_gate
        self.num_experts_per_tok = num_experts_per_tok
        self.num_experts = num_experts
        self.mamba_n_groups = mamba_n_groups
        self.mamba_n_heads = mamba_n_heads
        self.mamba_d_state = mamba_d_state
        self.mamba_d_conv = mamba_d_conv
        self.mamba_expand = mamba_expand
        self.mamba_chunk_size = mamba_chunk_size

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        kwarg_names = list(signature(self.config_class.__init__).parameters.keys())
        kwargs = {
            k: getattr(self, k) for k in kwarg_names + self.forced_config_args if hasattr(self, k) and k != "self"
        }
        return self.config_class(**kwargs)

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = self.base_model_class(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class CausalLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin):
    test_headmasking = False
    test_pruning = False
    model_tester_class = None
    all_model_classes = None
    rotary_embedding_layer = None  # Enables RoPE tests if set
    pipeline_model_mapping = None

    def setUp(self):
        if self.model_tester_class is None:
            raise ValueError(
                "You have inherited from CausalLMModelTest but did not set the model_tester_class attribute."
            )
        self.model_tester = self.model_tester_class(self)
        self.config_tester = ConfigTester(self, config_class=self.model_tester.config_class)
        if self.all_model_classes is None:
            self.all_model_classes = self.model_tester.all_model_classes
        if self.pipeline_model_mapping is None:
            raise ValueError(
                "You have inherited from CausalLMModelTest but did not set the pipeline_model_mapping attribute."
            )

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_sequence_classification_model(self):
        if self.model_tester.sequence_classification_class is None:
            self.skipTest("Model does not support sequence classification")
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = self.model_tester.sequence_classification_class(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_sequence_classification_model_for_single_label(self):
        if self.model_tester.sequence_classification_class is None:
            self.skipTest("Model does not support sequence classification")
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = self.model_tester.sequence_classification_class(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_sequence_classification_model_for_multi_label(self):
        if self.model_tester.sequence_classification_class is None:
            self.skipTest("Model does not support sequence classification")
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = self.model_tester.sequence_classification_class(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_token_classification_model(self):
        if self.model_tester.token_classification_class is None:
            self.skipTest("Model does not support token classification")
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
        model = self.model_tester.token_classification_class(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
        self.assertEqual(
            result.logits.shape,
            (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
        )

    @parameterized.expand([("linear",), ("dynamic",), ("yarn",)])
    def test_model_rope_scaling_from_config(self, scaling_type):
        if self.rotary_embedding_layer is None:
            self.skipTest("Rotary embedding layer not set")
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = self.model_tester_class.base_model_class(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = self.model_tester_class.base_model_class(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))

    def test_model_rope_scaling(self):
        if self.rotary_embedding_layer is None:
            self.skipTest("Rotary embedding layer not set")
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        scaling_factor = 10
        short_input_length = 10
        long_input_length = int(config.max_position_embeddings * 1.5)

        # Inputs
        x = torch.randn(
            1, dtype=torch.float32, device=torch_device
        )  # used exclusively to get the dtype and the device
        position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device)
        position_ids_short = position_ids_short.unsqueeze(0)
        position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device)
        position_ids_long = position_ids_long.unsqueeze(0)

        # Sanity check original RoPE
        original_rope = self.rotary_embedding_layer(config=config).to(torch_device)
        original_cos_short, original_sin_short = original_rope(x, position_ids_short)
        original_cos_long, original_sin_long = original_rope(x, position_ids_long)
        torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :])

        # Sanity check linear RoPE scaling
        # New position "x" should match original position with index "x/scaling_factor"
        config.rope_scaling = {"type": "linear", "factor": scaling_factor}
        linear_scaling_rope = self.rotary_embedding_layer(config=config).to(torch_device)
        linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short)
        linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :])
        for new_position in range(0, long_input_length, scaling_factor):
            original_position = int(new_position // scaling_factor)
            torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :])
            torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :])

        # Sanity check Dynamic NTK RoPE scaling
        # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase
        # with scaling_factor (or that `inv_freq` decreases)
        config.rope_scaling = {"type": "dynamic", "factor": scaling_factor}
        ntk_scaling_rope = self.rotary_embedding_layer(config=config).to(torch_device)
        ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short)
        ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(ntk_cos_short, original_cos_short)
        torch.testing.assert_close(ntk_sin_short, original_sin_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_cos_long, original_cos_long)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(ntk_sin_long, original_sin_long)
        self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all())

        # Sanity check Yarn RoPE scaling
        # Scaling should be over the entire input
        config.rope_scaling = {"type": "yarn", "factor": scaling_factor}
        yarn_scaling_rope = self.rotary_embedding_layer(config=config).to(torch_device)
        yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short)
        yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long)
        torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :])
        torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :])
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(yarn_cos_short, original_cos_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(yarn_sin_short, original_sin_short)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(yarn_cos_long, original_cos_long)
        with self.assertRaises(AssertionError):
            torch.testing.assert_close(yarn_sin_long, original_sin_long)

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @is_flaky()
    @slow
    def test_flash_attn_2_equivalence(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                self.skipTest(reason="Model does not support Flash Attention 2")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="eager"
                )
                model.to(torch_device)

                dummy_input = inputs_dict[model_class.main_input_name]
                dummy_input = dummy_input.to(torch_device)
                outputs = model(dummy_input, output_hidden_states=True)
                outputs_fa = model_fa(dummy_input, output_hidden_states=True)

                logits = outputs.hidden_states[-1]
                logits_fa = outputs_fa.hidden_states[-1]

                assert torch.allclose(logits_fa, logits, atol=2e-3)