File size: 4,244 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Script for training a Unigram tokenizer."""

import argparse
import logging

import datasets
from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers, processors
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer

from transformers import AlbertTokenizerFast


logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(description="Train a unigram tokenizer on the wikitext dataset.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default="wikitext",
        help="Name of the training. Explore datasets at: hf.co/datasets.",
    )
    parser.add_argument(
        "--dataset_config", type=str, default="wikitext-103-raw-v1", help="Configuration name of the dataset."
    )
    parser.add_argument(
        "--trust_remote_code",
        action="store_true",
        help=(
            "Whether to trust the execution of code from datasets/models defined on the Hub."
            " This option should only be set to `True` for repositories you trust and in which you have read the"
            " code, as it will execute code present on the Hub on your local machine."
        ),
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1000,
        help="Batch size during training.",
    )
    parser.add_argument(
        "--vocab_size",
        type=int,
        default=10048,
        help="Size of the desired vocabulary.",
    )
    parser.add_argument(
        "--limit",
        default=None,
        type=int,
        help="Limit the number of shards (used for debugging).",
    )
    parser.add_argument(
        "--export_to_hub",
        action="store_true",
    )

    args = parser.parse_args()
    return args


def main(args):
    dataset = datasets.load_dataset(
        args.dataset_name, args.dataset_config, split="train", trust_remote_code=args.trust_remote_code
    )

    if args.limit is not None:
        max_train_samples = min(len(dataset), args.limit)
        dataset = dataset.select(range(max_train_samples))
        logger.info(f"Limiting the dataset to {args.limit} entries.")

    def batch_iterator():
        for i in range(0, len(dataset), args.batch_size):
            yield dataset[i : i + args.batch_size]["text"]

    # Prepare the tokenizer.
    tokenizer = Tokenizer(Unigram())
    tokenizer.normalizer = normalizers.Sequence([normalizers.Replace("``", '"'), normalizers.Replace("''", '"')])
    tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()

    # Prepare the trainer.
    trainer = UnigramTrainer(
        unk_token="<unk>",
        special_tokens=["[CLS]", "[SEP]", "<unk>", "<pad>", "[MASK]"],
        vocab_size=args.vocab_size,
    )

    logger.info("Training the tokenizer.")
    tokenizer.train_from_iterator(batch_iterator(), trainer=trainer)
    logger.info("Tokenizer training complete!")

    cls_token_id = tokenizer.token_to_id("[CLS]")
    sep_token_id = tokenizer.token_to_id("[SEP]")
    tokenizer.post_processor = processors.TemplateProcessing(
        single="[CLS]:0 $A:0 [SEP]:0",
        pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
        special_tokens=[
            ("[CLS]", cls_token_id),
            ("[SEP]", sep_token_id),
        ],
    )
    tokenizer.decoder = decoders.Metaspace()

    if args.export_to_hub:
        logger.info("Exporting the trained tokenizer to Hub.")
        new_tokenizer = AlbertTokenizerFast(tokenizer_object=tokenizer)
        new_tokenizer.push_to_hub("unigram-tokenizer-dataset")


if __name__ == "__main__":
    args = parse_args()
    main(args)