File size: 35,008 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""":
This script is used to test training a model using Tensor Parallelism and Data Parallelism.

Usage:
export CUDA_VISIBLE_DEVICES=0,1,2,3
export CUDA_VISIBLE_DEVICES=4,5,6,7
export CUDA_VISIBLE_DEVICES=5,6,7
TP_SIZE=2 DP_SIZE=2 torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:29503 test_train.py
CP_SIZE=2 DP_SIZE=2 torchrun --nproc_per_node=4 test_train.py
CP_SIZE=2 TP_SIZE=2 torchrun --nproc_per_node=4 test_train.py

TP_SIZE=1 CP_SIZE=4 torchrun --nproc_per_node=4 test_train.py
TP_SIZE=1 DP_SIZE=4 torchrun --nproc_per_node=4 test_train.py
TP_SIZE=4 DP_SIZE=1 torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:29503 test_train.py
IGNORE_SANITY=1 CP_SIZE=1 TP_SIZE=1 DP_SIZE=1 torchrun --nproc_per_node=1 --rdzv_endpoint=l
ocalhost:29504 test_train.py
"""

import logging
import os
from collections.abc import Iterable
from contextlib import nullcontext
from typing import Dict, Optional

import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.nn as nn
import torch.optim as optim
import wandb
from datasets import load_dataset
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import ShardingStrategy
from torch.distributed.tensor import DTensor
from torch.distributed.tensor.experimental import context_parallel
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.utils.data import DataLoader, default_collate
from torch.utils.data.distributed import DistributedSampler

from transformers import AutoModelForCausalLM, AutoTokenizer


ignore_sanity_checks = int(os.environ.get("IGNORE_SANITY", 0)) == 1
# torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True

# Set up logging
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

# from torch.distributed.tensor.experimental._attention import set_rotate_method

# set_rotate_method("alltoall")  # rotate shards using all-to-all


def main():
    tp_size = int(os.environ.get("TP_SIZE", 1))
    dp_size = int(os.environ.get("DP_SIZE", 4))
    cp_size = int(os.environ.get("CP_SIZE", 1))  # Add CP size configuration
    sdpa_backend = SDPBackend.FLASH_ATTENTION  # For CP
    # sdpa_backend = SDPBackend.MATH # For CP
    global_batch_size = 8  # Desired global batch size
    seq_len = 1024  # Sequence length
    num_train_steps = 10000  # Number of training steps
    LR = 1e-5
    model_name = "HuggingFaceTB/SmolLM2-1.7B"
    # model_name = "unsloth/Llama-3.2-1B"

    CHECKPOINT_DIR = f"checkpoint_tp{tp_size}_dp{dp_size}_cp{cp_size}"

    # Initialize distributed environment
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
        dist.init_process_group("nccl")
        rank = dist.get_rank()
        world_size = dist.get_world_size()
        local_rank = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(local_rank)

        assert world_size == tp_size * dp_size * cp_size, (
            f"World size ({world_size}) must equal TP size ({tp_size}) * DP size ({dp_size}) * CP size ({cp_size})"
        )

        mesh = torch.arange(world_size).reshape(dp_size, tp_size, cp_size)
        world_mesh = DeviceMesh(device_type="cuda", mesh=mesh, mesh_dim_names=("dp", "tp", "cp"))
        tp_mesh = world_mesh["tp"]
        dp_mesh = world_mesh["dp"]
        cp_mesh = world_mesh["cp"]
        world_mesh["dp", "cp"]._flatten(mesh_dim_name="dp_cp")
        logger.info(f"Created DeviceMesh: {world_mesh}")
        logger.info(
            f"Distributed setup - Rank: {rank}, World size: {world_size}, Local rank: {local_rank}, DP: {dp_mesh.get_local_rank()}, TP: {tp_mesh.get_local_rank()}, CP: {cp_mesh.get_local_rank()}"
        )

        if dist.get_rank() == 0:
            wandb.init(
                project="tp_dp_test",
                config={
                    "tp_size": tp_size,
                    "dp_size": dp_size,
                    "cp_size": cp_size,
                    "global_batch_size": global_batch_size,
                    "model_name": model_name,
                    "dataset": "roneneldan/TinyStories-1M",
                    "seq_len": seq_len,
                    "lr": LR,
                    "weight_decay": 0.1,
                },
                name=f"llama_tp{tp_size}_dp{dp_size}_cp{cp_size}"
                if model_name == "unsloth/Llama-3.2-1B"
                else f"tp{tp_size}_dp{dp_size}_cp{cp_size}",
            )
            logger.info(f"ignore_sanity_checks is set to: {ignore_sanity_checks}")
            logger.info("Wandb initialized.")
            # Log the current file to wandb
            wandb.save("test_train.py")

    else:
        logger.info("Running in non-distributed mode. DeviceMesh not applicable.")
        rank = 0
        world_size = 1
        local_rank = 0
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        wandb.init(
            project="tp_dp_test",
            config={
                "tp_size": 1,
                "dp_size": 1,
                "global_batch_size": global_batch_size,
                "model_name": model_name,
                "dataset": "roneneldan/TinyStories-1M",
                "seq_len": seq_len,
            },
            name="llama_tp1_dp1_nondist" if model_name == "unsloth/Llama-3.2-1B" else "tp1_dp1_nondist",
        )
        logger.info("Wandb initialized for non-distributed run.")

    # Load model and tokenizer
    logger.info(f"Loading model and tokenizer from {model_name}")
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        logger.info(f"Set pad_token to eos_token: {tokenizer.pad_token}")

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_mesh=tp_mesh if dist.is_initialized() else None,
        tp_plan="auto",
        torch_dtype=torch.bfloat16,
    )
    logger.info(f"Model loaded onto device mesh: {tp_mesh}")

    if dist.is_initialized():
        assert model.config.num_key_value_heads % tp_mesh.size() == 0, (
            f"num_key_value_heads={model.config.num_key_value_heads} must be divisible by tp_size={tp_mesh.size()}"
        )
        device = torch.device(f"cuda:{local_rank}")
    else:
        model = model.to(device)

    logger.info(f"Using device: {device} for non-model tensors")
    use_ddp = False
    if dist.is_initialized() and dp_mesh.size() > 1:
        # FSDP1
        model = FSDP(model, device_mesh=dp_mesh, sharding_strategy=ShardingStrategy.NO_SHARD)
        # FSDP2
        # for transformer_block in model.model.layers:
        #     fully_shard(transformer_block, mesh=dp_mesh, reshard_after_forward=False)
        # fully_shard(model.model, mesh=dp_mesh, reshard_after_forward=False)
        # DDP
        # replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
        # assert len(list(model.parameters()))>5, "No parameters found in model. Probably DDP/FSDP bug.." # TODO: we should be cautious abt using model.parameters()
        use_ddp = True

    model.train()
    assert len(list(model.parameters())) > 0, "No parameters found in model. Probably DDP bug.."
    assert len([p for p in model.parameters() if p.requires_grad]) > 0, (
        "No gradients found in model. Probably DDP bug.."
    )

    if dist.is_initialized() and not ignore_sanity_checks:
        # assert model is replicated across all dp
        for name, param in model.named_parameters():
            sanity_check_tensor_sync(param, dp_mesh)

        # assert model is different across tp (only for sharded params)
        for name, param in model.named_parameters():
            if isinstance(param, DTensor) and param.placements[0].is_shard():
                # Only check sharded parameters for non-sync across TP
                sanity_check_tensor_sync(param, tp_mesh, not_sync=True)
            elif isinstance(param, DTensor) and param.placements[0].is_replicate():
                # Replicated parameters should be the same across TP
                sanity_check_tensor_sync(param, tp_mesh)

        # assert model is replicated across cp
        for name, param in model.named_parameters():
            sanity_check_tensor_sync(param, cp_mesh)

    # Load and preprocess TinyStories dataset
    logger.info("Loading TinyStories dataset...")
    raw_dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]")  # Use 1% for faster testing

    def tokenize_function(examples):
        # Tokenize the text without padding
        tokenized_batch = tokenizer(
            examples["text"], padding=False, truncation=True, max_length=seq_len, return_tensors=None
        )
        # Set labels to be the same as input_ids for Causal LM
        tokenized_batch["labels"] = tokenized_batch["input_ids"].copy()
        return tokenized_batch

    tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
    logger.info(f"Dataset loaded and tokenized. Size: {len(tokenized_dataset)}")

    # Create packed sequences
    def create_packed_sequences(examples):
        # Flatten all sequences
        all_tokens = []
        for input_ids in examples["input_ids"]:
            all_tokens.extend(input_ids)

        # Split into sequences of seq_len + 1 (for input + label)
        num_sequences = len(all_tokens) // (seq_len + 1)
        packed_input_ids = []
        packed_labels = []

        for i in range(num_sequences):
            start_idx = i * (seq_len + 1)
            end_idx = start_idx + (seq_len + 1)
            # Get the full sequence
            full_sequence = all_tokens[start_idx:end_idx]
            # For input_ids, remove the last token
            packed_input_ids.append(full_sequence[:-1])
            # For labels, remove the first token
            packed_labels.append(full_sequence[1:])

        return {"input_ids": packed_input_ids, "labels": packed_labels}

    # Apply packing to the dataset
    packed_dataset = tokenized_dataset.map(
        create_packed_sequences,
        batched=True,
        remove_columns=tokenized_dataset.column_names,
        batch_size=1000,  # Process in batches for efficiency
        num_proc=60,
    )
    logger.info(f"Dataset packed. New size: {len(packed_dataset)}")

    # Shuffle the packed dataset
    packed_dataset = packed_dataset.shuffle(seed=42)
    logger.info("Packed dataset shuffled")

    # Calculate local batch size
    if dist.is_initialized():
        assert global_batch_size % dp_mesh.size() == 0, (
            f"Global batch size ({global_batch_size}) must be divisible by DP size ({dp_mesh.size()})"
        )
        local_batch_size = global_batch_size // dp_mesh.size()
    else:
        local_batch_size = global_batch_size

    logger.info(
        f"Global batch size: {global_batch_size}, DP size: {dp_size if dist.is_initialized() else 1}, Local batch size: {local_batch_size}"
    )

    # Simple collate function since sequences are already packed
    def collate_fn(batch):
        input_ids = torch.tensor([item["input_ids"] for item in batch], dtype=torch.long)
        labels = torch.tensor([item["labels"] for item in batch], dtype=torch.long)
        return {"input_ids": input_ids, "labels": labels}

    if dist.is_initialized():
        sampler = DistributedSampler(
            packed_dataset, num_replicas=dp_mesh.size(), rank=dp_mesh.get_local_rank(), shuffle=False
        )
    else:
        sampler = None

    dataloader = DataLoader(
        packed_dataset,
        batch_size=local_batch_size,
        sampler=sampler,
        shuffle=False,
        collate_fn=collate_fn,
    )
    logger.info(f"DataLoader created. Distributed: {dist.is_initialized()}")

    optimizer = optim.AdamW(model.parameters(), lr=LR, weight_decay=0.1)

    # Training loop
    logger.info(f"Starting training for {num_train_steps} steps...")
    model.train()
    step = 0
    while step < num_train_steps:
        for batch in dataloader:
            if step >= num_train_steps:
                break  # Exit loop if max steps reached

            # Move batch to appropriate device
            batch = {k: v.to(device) for k, v in batch.items()}

            # Sanity checks for batch distribution (only if distributed)
            if dist.is_initialized() and not ignore_sanity_checks:
                # check batch is same across all tp
                sanity_check_tensor_sync(batch["input_ids"], tp_mesh)
                # check batch is different across dp
                sanity_check_tensor_sync(batch["input_ids"], dp_mesh, not_sync=True)

            optimizer.zero_grad()

            # Add position_ids to batch before CP sharding
            batch_size = batch["input_ids"].shape[0]
            position_ids = torch.arange(0, seq_len, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
            batch["position_ids"] = position_ids
            from torch.distributed.tensor.experimental._attention import _cp_options

            _cp_options.enable_load_balance = False

            with sdpa_kernel(sdpa_backend):  # TODO: ideally move this to attention implementation
                cp_context = (
                    nullcontext()
                    if cp_mesh.size() == 1
                    else context_parallel(
                        cp_mesh,
                        buffers=[
                            batch["input_ids"],
                            batch["labels"],
                            batch["position_ids"],
                        ],  # TODO: need to add attention mask
                        buffer_seq_dims=[1, 1, 1],
                    )
                )
                with cp_context:
                    # Pop labels from batch before model forward pass
                    labels = batch.pop("labels")
                    outputs = model(**batch)  # [mbs, seq_len/cp]
                    loss = outputs.loss
                    logits = outputs.logits

                    # Compute loss with shifted labels
                    loss = model.loss_function(
                        logits=logits, labels=None, shift_labels=labels, vocab_size=model.config.vocab_size
                    )

                    # Sanity checks for logits
                    if dist.is_initialized() and not ignore_sanity_checks:
                        # sanity_check_tensor_sync(logits, tp_mesh) # TODO: only true without sequence parallel
                        sanity_check_tensor_sync(logits, dp_mesh, not_sync=True)
                        sanity_check_tensor_sync(logits, cp_mesh, not_sync=True)

                    loss.backward()

                # all reduce grads across dp_cp if applicable
                all_reduce_grads(model, world_mesh, use_ddp=use_ddp)

                # Sanity checks for gradients (only if distributed)
                if dist.is_initialized() and not ignore_sanity_checks:
                    # check grads are not same across all tp (for sharded grads)
                    for name, param in model.named_parameters():
                        if param.grad is not None and isinstance(param.grad, DTensor):
                            if param.grad.placements[0].is_shard():
                                sanity_check_tensor_sync(param.grad, tp_mesh, not_sync=True)
                            elif param.grad.placements[0].is_replicate():
                                sanity_check_tensor_sync(param.grad, tp_mesh)
                    # check grads are same across dp
                    for name, param in model.named_parameters():
                        if param.grad is not None and dp_mesh.size() > 1:
                            sanity_check_tensor_sync(param.grad, dp_mesh)
                    # check grads are same across cp
                    for name, param in model.named_parameters():
                        if param.grad is not None and cp_mesh.size() > 1:
                            sanity_check_tensor_sync(param.grad, cp_mesh)

                # Calculate gradient norm and clip gradients
                if hasattr(model, "clip_grad_norm_"):
                    # when using FSDP or DDP, model.parameters() doesn't work
                    gradnorm = model.clip_grad_norm_(max_norm=1.0, norm_type=2.0)
                else:
                    assert len(list(model.parameters())) > 2, "No parameters found in model. Probably DDP bug.."
                    assert len([p for p in model.parameters() if p.requires_grad]) > 2, (
                        "No gradients found in model. Probably DDP bug.."
                    )
                    assert len([p for p in model.parameters() if p.grad is not None]) > 2, (
                        "No gradients found in model. Probably DDP bug.."
                    )
                    # only works with FSDP's NO_SHARD otherwise we should use FSDP's clip_grad_norm_
                    gradnorm = clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=2.0, foreach=True)

                optimizer.step()
                # Sanity checks for updated model parameters (only if distributed)
                if dist.is_initialized() and not ignore_sanity_checks:
                    # check updated model is different across all tp (for sharded params)
                    for name, param in model.named_parameters():
                        if isinstance(param, DTensor):
                            if param.placements[0].is_shard():
                                sanity_check_tensor_sync(param, tp_mesh, not_sync=True)
                            elif param.placements[0].is_replicate():
                                sanity_check_tensor_sync(param, tp_mesh)
                    # check updated model is same across dp
                    for name, param in model.named_parameters():
                        sanity_check_tensor_sync(param, dp_mesh)
                    # check updated model is same across cp
                    for name, param in model.named_parameters():
                        sanity_check_tensor_sync(param, cp_mesh)

                # allreduce loss across cp_dp before logging
                if dist.is_initialized() and (cp_mesh.size() > 1 or dp_mesh.size() > 1):
                    dist.all_reduce(loss, group=world_mesh["dp_cp"].get_group(), op=dist.ReduceOp.AVG)
                current_loss = loss.item()

                # Log loss and gradnorm to wandb (only on rank 0 of dp group)
                if not dist.is_initialized() or dist.get_rank() == 0:
                    logger.info(
                        f"Step: {step} | GBS: {global_batch_size} | DP: {dp_mesh.size()} | TP: {tp_mesh.size()} | CP: {cp_mesh.size()} | Loss: {current_loss} | Gradnorm: {gradnorm} | lr: {LR}"
                    )
                    wandb.log(
                        {
                            "train/loss": current_loss,
                            "train/gradnorm": gradnorm,
                            "step": step,
                            "lr": LR,
                            "GBS": global_batch_size,
                        }
                    )

            step += 1  # Increment step count

    logger.info("Training loop finished.")

    # Save model using DCP (only if distributed)
    if dist.is_initialized():
        state_dict = {"app": AppState(model, optimizer)}
        dcp.save(
            state_dict=state_dict,
            checkpoint_id=CHECKPOINT_DIR,
        )
        logger.info(f"Saved checkpoint to {CHECKPOINT_DIR}")
    else:
        # Fallback to regular save for non-distributed case
        save_dir = "test_model_nondist"
        model.save_pretrained(save_dir, safe_serialization=False)
        tokenizer.save_pretrained(save_dir)  # Save tokenizer too
        logger.info(f"Saved model to {save_dir}")

    # Example of loading the checkpoint (only if distributed)
    if dist.is_initialized():
        # Create a new model instance
        logger.info("Creating new model instance for verification")
        new_model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_mesh=tp_mesh,
            torch_dtype=torch.bfloat16,  # Use same dtype
        )
        new_optimizer = optim.AdamW(new_model.parameters(), lr=LR)

        # Load checkpoint into new model
        state_dict = {"app": AppState(new_model, new_optimizer)}
        dcp.load(
            state_dict=state_dict,
            checkpoint_id=CHECKPOINT_DIR,
        )
        logger.info("Loaded checkpoint into new model")

        # Verify model weights match
        logger.info("Verifying model weights match...")
        for (name1, param1), (name2, param2) in zip(model.named_parameters(), new_model.named_parameters()):
            torch.testing.assert_close(
                param1.to_local(),
                param2.to_local(),
                rtol=1e-3,
                atol=1e-3,
                msg=f"Weights mismatch in {name1} vs {name2}",
            )

        # Verify optimizer states match
        logger.info("Verifying optimizer states match...")
        for name1, state1 in optimizer.state_dict().items():
            state2 = new_optimizer.state_dict()[name1]
            if name1 == "state":
                # Compare state dictionaries for each parameter
                for param_id, param_state1 in state1.items():
                    param_state2 = state2[param_id]
                    # Compare each state component (step, exp_avg, exp_avg_sq)
                    for key, value1 in param_state1.items():
                        value2 = param_state2[key]
                        if isinstance(value1, DTensor):
                            # Convert DTensors to local tensors for comparison
                            torch.testing.assert_close(
                                value1.to_local(),
                                value2.to_local(),
                                rtol=1e-5,
                                atol=1e-5,
                                msg=f"Optimizer state mismatch in state[{param_id}][{key}]",
                            )
                        else:
                            torch.testing.assert_close(
                                value1,
                                value2,
                                rtol=1e-5,
                                atol=1e-5,
                                msg=f"Optimizer state mismatch in state[{param_id}][{key}]",
                            )
            elif name1 == "param_groups":
                # Compare param_groups (excluding the actual params list)
                for i, (group1, group2) in enumerate(zip(state1, state2)):
                    for key in group1:
                        if key != "params":  # Skip comparing the params list
                            assert group1[key] == group2[key], f"Param group mismatch in param_groups[{i}][{key}]"

        # Run a forward pass with both models to verify outputs match
        logger.info("Running forward pass verification...")
        with torch.no_grad():
            # Use the last batch for verification
            batch = {k: v.to(device) for k, v in batch.items()}  # Ensure batch is on correct device
            original_outputs = model(**batch)
            new_outputs = new_model(**batch)
            torch.testing.assert_close(
                original_outputs.logits.to_local(),
                new_outputs.logits.to_local(),
                rtol=1e-3,
                atol=1e-3,
                msg="Model outputs do not match!",
            )  # Increased tolerance slightly for bf16

    # Clean up distributed environment and finish wandb run
    if dist.is_initialized():
        dist.destroy_process_group()
        logger.info("Cleaned up distributed process group")
        # Finish wandb run on rank 0
        if dist.get_rank() == 0:
            wandb.finish()
            logger.info("Wandb run finished.")
    else:
        wandb.finish()
        logger.info("Wandb run finished.")


def all_reduce_grads(model, world_mesh, use_ddp):
    """All reduce gradients across dp_cp if applicable."""
    cp_mesh = world_mesh["cp"]
    if use_ddp:
        # DDP takes care of syncing grads
        mesh = cp_mesh
    else:
        mesh = world_mesh["dp", "cp"]._flatten(mesh_dim_name="dp_cp")
    if dist.is_initialized() and mesh.size() > 1:
        for name, param in model.named_parameters():
            if param.grad is not None:
                # Workaround for cross-mesh communication limitation with DTensor gradients
                if isinstance(param.grad, DTensor):
                    local_grad = param.grad.to_local()
                    # Ensure grad requires grad for inplace modification checks (might not be needed)
                    # local_grad = local_grad.detach().requires_grad_(True)
                    torch.distributed.all_reduce(local_grad, op=torch.distributed.ReduceOp.SUM, group=mesh.get_group())
                    local_grad = local_grad / mesh.size()
                    # Assign averaged grad back - need careful handling if DTensor structure is complex
                    # This simple assignment might work if the grad structure matches param structure
                    param.grad = DTensor.from_local(
                        local_grad, device_mesh=param.grad.device_mesh, placements=param.grad.placements
                    )
                else:
                    # Handle regular tensors if any exist (e.g. buffers not converted to DTensor)
                    torch.distributed.all_reduce(param.grad, op=torch.distributed.ReduceOp.AVG, group=mesh.get_group())


class ContextParallelCollator:
    """Collator for context parallel training that splits sequences into chunks."""

    def __init__(self, cp_mesh: Optional[DeviceMesh] = None):
        self.cp_mesh = cp_mesh

    def __call__(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        batch = default_collate(batch)
        if self.cp_mesh is not None and self.cp_mesh.size() > 1:
            # Get sequence length from the input batch
            seq_len = batch["input_ids"].shape[1]
            assert seq_len % self.cp_mesh.size() == 0, (
                f"Sequence length {seq_len} must be divisible by CP size {self.cp_mesh.size()}"
            )
            chunk_size = seq_len // self.cp_mesh.size()
            cp_rank = self.cp_mesh.get_local_rank()
            start_idx = cp_rank * chunk_size
            end_idx = start_idx + chunk_size

            # Keep only the local chunk of the sequence
            batch["input_ids"] = batch["input_ids"][:, start_idx:end_idx]
            batch["attention_mask"] = batch["attention_mask"][:, start_idx:end_idx]
            batch["labels"] = batch["labels"][:, start_idx:end_idx]

        return batch


class AppState(Stateful):
    """Wrapper for checkpointing the Application State including model and optimizer."""

    def __init__(self, model, optimizer=None):
        self.model = model
        self.optimizer = optimizer

    def state_dict(self):
        model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer)
        return {"model": model_state_dict, "optim": optimizer_state_dict}

    def load_state_dict(self, state_dict):
        set_state_dict(
            self.model, self.optimizer, model_state_dict=state_dict["model"], optim_state_dict=state_dict["optim"]
        )


def sanity_check_tensor_sync(
    tensor: torch.Tensor, mesh: DeviceMesh, rtol: float = 1e-4, atol: float = 1e-4, not_sync: bool = False
) -> None:
    """
    Verify that a tensor is synchronized (or not synchronized) across all processes in the mesh's process group.
    Handles both regular tensors and DTensors.

    Args:
        tensor (torch.Tensor): The tensor to check for synchronization (can be DTensor)
        mesh (DeviceMesh): The device mesh containing the process group
        rtol (float): Relative tolerance for comparison
        atol (float): Absolute tolerance for comparison
        not_sync (bool): If True, asserts that tensors are NOT synchronized. If False, asserts they are synchronized.
    """
    if not dist.is_initialized() or mesh.size() == 1:
        return  # No need to check in non-distributed mode

    # Get the process group from the mesh
    pg = mesh.get_group()

    # Convert DTensor to local tensor if needed
    if hasattr(tensor, "to_local"):
        local_tensor = tensor.to_local()
    else:
        local_tensor = tensor

    # Gather tensors from all processes
    world_size = dist.get_world_size(pg)
    gathered_tensors = [torch.empty_like(local_tensor) for _ in range(world_size)]
    dist.all_gather(gathered_tensors, local_tensor, group=pg)

    # Compare each tensor with the first one
    for i in range(1, world_size):
        try:
            torch.testing.assert_close(gathered_tensors[0], gathered_tensors[i], rtol=rtol, atol=atol)
        except AssertionError as e:
            if not_sync:
                continue
            # # Add detailed debugging for logit synchronization issues
            # print(f"\nLogit synchronization error between rank 0 and rank {i}:")
            # print(f"Tensor shape: {gathered_tensors[0].shape}")
            # print(f"Number of mismatched elements: {(gathered_tensors[0] != gathered_tensors[i]).sum()}")
            # print(f"Percentage of mismatched elements: {((gathered_tensors[0] != gathered_tensors[i]).sum() / gathered_tensors[0].numel() * 100):.2f}%")

            # # Find the first few mismatches
            # mismatches = torch.nonzero(gathered_tensors[0] != gathered_tensors[i])
            # print("\nFirst few mismatches:")
            # for idx in mismatches[:5]:
            #     idx = tuple(idx.tolist())
            #     print(f"Index {idx}:")
            #     print(f"Rank 0 value: {gathered_tensors[0][idx]}")
            #     print(f"Rank {i} value: {gathered_tensors[i][idx]}")
            #     print(f"Absolute difference: {abs(gathered_tensors[0][idx] - gathered_tensors[i][idx])}")
            #     print(f"Relative difference: {abs(gathered_tensors[0][idx] - gathered_tensors[i][idx]) / max(abs(gathered_tensors[0][idx]), abs(gathered_tensors[i][idx]))}")

            # # Check if differences are systematic (e.g., all positive or negative)
            # diff = gathered_tensors[0] - gathered_tensors[i]
            # print(f"\nDifference statistics:")
            # print(f"Mean difference: {diff.mean()}")
            # print(f"Std difference: {diff.std()}")
            # print(f"Max positive difference: {diff.max()}")
            # print(f"Max negative difference: {diff.min()}")
            raise e


def clip_grad_norm_(
    parameters: Iterable[torch.Tensor],
    max_norm: float,
    norm_type: float = 2.0,
    error_if_nonfinite: bool = False,
    foreach: bool | None = None,
) -> torch.Tensor:
    """
    Clip the gradient norm of an iterable of parameters.
    """
    # Filter out parameters with no gradients
    parameters = [p for p in parameters if p.grad is not None]
    assert len(parameters) > 0, "No parameters with gradients found"

    # Calculate total norm
    if norm_type == float("inf"):
        total_norm = max(p.grad.detach().abs().max() for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type) for p in parameters]), norm_type)

    # Convert DTensor to local tensor if needed
    if isinstance(total_norm, DTensor):
        total_norm = total_norm.full_tensor()

    # Clip gradients
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for p in parameters:
            p.grad.detach().mul_(clip_coef)

    return total_norm


def check_params_sync(model_params, original_params):
    """
    Check if original_params are being updated in sync with model parameters.

    Args:
        model_params: Iterator of model parameters after update
        original_params: List of original parameters before DDP wrapping
    """
    for mp, op in zip(model_params, original_params):
        if isinstance(mp, DTensor):
            mp = mp.to_local()
        if isinstance(op, DTensor):
            op = op.to_local()
        if not torch.allclose(mp.data, op.data, rtol=0, atol=0):
            raise RuntimeError(f"Parameters out of sync: model param {mp.data} != original param {op.data}")
    return True


def get_parameters(model: nn.Module) -> Iterable[torch.Tensor]:
    """
    Get all parameters from a model by iterating over its modules.
    This is an alternative to model.parameters() that works with DTensor models.

    Args:
        model (nn.Module): The model to get parameters from

    Returns:
        Iterable[torch.Tensor]: An iterator over all parameters in the model
    """
    for name, module in model._modules.items():
        # Look for parameters in module attributes
        for attr_name, attr in module.__dict__.items():
            if isinstance(attr, torch.Tensor) and attr.requires_grad:
                yield attr
        # Recursively get parameters from submodules
        for param in get_parameters(module):
            yield param


def update_model_parameters(model: nn.Module) -> None:
    """
    Update model._parameters using named_modules() to ensure all parameters are properly tracked.

    Args:
        model (nn.Module): The model to update parameters for
    """
    # Clear existing parameters
    model._parameters = {}

    # Add parameters from named_modules
    for name, module in model.named_modules():
        # Skip the root module itself
        if name == "":
            continue

        # Get the parameter name by removing 'module.' prefix if it exists
        param_name = name.replace("module.", "")

        # Add weight and bias parameters if they exist
        if hasattr(module, "weight") and module.weight is not None:
            model._parameters[f"{param_name}.weight"] = module.weight
        if hasattr(module, "bias") and module.bias is not None:
            model._parameters[f"{param_name}.bias"] = module.bias


if __name__ == "__main__":
    main()