File size: 80,513 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from examples/modular-transformers/modular_test_detr.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_test_detr.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import Tensor, nn

from ...activations import ACT2FN
from ...integrations import use_kernel_forward_from_hub
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import meshgrid
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_timm_available,
    replace_return_docstrings,
    requires_backends,
)
from ...utils.backbone_utils import load_backbone
from .configuration_test_detr import TestDetrConfig


if is_timm_available():
    from timm import create_model

_CONFIG_FOR_DOC = "TestDetrConfig"


@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
class MultiScaleDeformableAttention(nn.Module):
    def forward(
        self,
        value: Tensor,
        value_spatial_shapes: Tensor,
        value_spatial_shapes_list: List[Tuple],
        level_start_index: Tensor,
        sampling_locations: Tensor,
        attention_weights: Tensor,
        im2col_step: int,
    ):
        batch_size, _, num_heads, hidden_dim = value.shape
        _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
        value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
        sampling_grids = 2 * sampling_locations - 1
        sampling_value_list = []
        for level_id, (height, width) in enumerate(value_spatial_shapes_list):
            # batch_size, height*width, num_heads, hidden_dim
            # -> batch_size, height*width, num_heads*hidden_dim
            # -> batch_size, num_heads*hidden_dim, height*width
            # -> batch_size*num_heads, hidden_dim, height, width
            value_l_ = (
                value_list[level_id]
                .flatten(2)
                .transpose(1, 2)
                .reshape(batch_size * num_heads, hidden_dim, height, width)
            )
            # batch_size, num_queries, num_heads, num_points, 2
            # -> batch_size, num_heads, num_queries, num_points, 2
            # -> batch_size*num_heads, num_queries, num_points, 2
            sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
            # batch_size*num_heads, hidden_dim, num_queries, num_points
            sampling_value_l_ = nn.functional.grid_sample(
                value_l_,
                sampling_grid_l_,
                mode="bilinear",
                padding_mode="zeros",
                align_corners=False,
            )
            sampling_value_list.append(sampling_value_l_)
        # (batch_size, num_queries, num_heads, num_levels, num_points)
        # -> (batch_size, num_heads, num_queries, num_levels, num_points)
        # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
        attention_weights = attention_weights.transpose(1, 2).reshape(
            batch_size * num_heads, 1, num_queries, num_levels * num_points
        )
        output = (
            (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
            .sum(-1)
            .view(batch_size, num_heads * hidden_dim, num_queries)
        )
        return output.transpose(1, 2).contiguous()


@dataclass
class TestDetrDecoderOutput(ModelOutput):
    """
    Base class for outputs of the TestDetrDecoder. This class adds two attributes to
    BaseModelOutputWithCrossAttentions, namely:
    - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer)
    - a stacked tensor of intermediate reference points.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    intermediate_hidden_states: Optional[torch.FloatTensor] = None
    intermediate_reference_points: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class TestDetrModelOutput(ModelOutput):
    """
    Base class for outputs of the Deformable DETR encoder-decoder model.

    Args:
        init_reference_points (`torch.FloatTensor` of shape  `(batch_size, num_queries, 4)`):
            Initial reference points sent through the Transformer decoder.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.
        intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
            Stacked intermediate hidden states (output of each layer of the decoder).
        intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
            Stacked intermediate reference points (reference points of each layer of the decoder).
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer
            plus the initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries,
            num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted
            average in the self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
            layer plus the initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`.
            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
            picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
            foreground and background).
        enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
            Logits of predicted bounding boxes coordinates in the first stage.
    """

    init_reference_points: Optional[torch.FloatTensor] = None
    last_hidden_state: Optional[torch.FloatTensor] = None
    intermediate_hidden_states: Optional[torch.FloatTensor] = None
    intermediate_reference_points: Optional[torch.FloatTensor] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    enc_outputs_class: Optional[torch.FloatTensor] = None
    enc_outputs_coord_logits: Optional[torch.FloatTensor] = None


class TestDetrFrozenBatchNorm2d(nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
    torchvision.models.resnet[18,34,50,101] produce nans.
    """

    def __init__(self, n):
        super().__init__()
        self.register_buffer("weight", torch.ones(n))
        self.register_buffer("bias", torch.zeros(n))
        self.register_buffer("running_mean", torch.zeros(n))
        self.register_buffer("running_var", torch.ones(n))

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        num_batches_tracked_key = prefix + "num_batches_tracked"
        if num_batches_tracked_key in state_dict:
            del state_dict[num_batches_tracked_key]

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def forward(self, x):
        # move reshapes to the beginning
        # to make it user-friendly
        weight = self.weight.reshape(1, -1, 1, 1)
        bias = self.bias.reshape(1, -1, 1, 1)
        running_var = self.running_var.reshape(1, -1, 1, 1)
        running_mean = self.running_mean.reshape(1, -1, 1, 1)
        epsilon = 1e-5
        scale = weight * (running_var + epsilon).rsqrt()
        bias = bias - running_mean * scale
        return x * scale + bias


def replace_batch_norm(model):
    r"""
    Recursively replace all `torch.nn.BatchNorm2d` with `TestDetrFrozenBatchNorm2d`.

    Args:
        model (torch.nn.Module):
            input model
    """
    for name, module in model.named_children():
        if isinstance(module, nn.BatchNorm2d):
            new_module = TestDetrFrozenBatchNorm2d(module.num_features)

            if not module.weight.device == torch.device("meta"):
                new_module.weight.data.copy_(module.weight)
                new_module.bias.data.copy_(module.bias)
                new_module.running_mean.data.copy_(module.running_mean)
                new_module.running_var.data.copy_(module.running_var)

            model._modules[name] = new_module

        if len(list(module.children())) > 0:
            replace_batch_norm(module)


class TestDetrConvEncoder(nn.Module):
    """
    Convolutional backbone, using either the AutoBackbone API or one from the timm library.

    nn.BatchNorm2d layers are replaced by TestDetrFrozenBatchNorm2d as defined above.

    """

    def __init__(self, config):
        super().__init__()

        self.config = config

        # For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API
        if config.use_timm_backbone:
            # We default to values which were previously hard-coded. This enables configurability from the config
            # using backbone arguments, while keeping the default behavior the same.
            requires_backends(self, ["timm"])
            kwargs = getattr(config, "backbone_kwargs", {})
            kwargs = {} if kwargs is None else kwargs.copy()
            out_indices = kwargs.pop("out_indices", (2, 3, 4) if config.num_feature_levels > 1 else (4,))
            num_channels = kwargs.pop("in_chans", config.num_channels)
            if config.dilation:
                kwargs["output_stride"] = kwargs.get("output_stride", 16)
            backbone = create_model(
                config.backbone,
                pretrained=config.use_pretrained_backbone,
                features_only=True,
                out_indices=out_indices,
                in_chans=num_channels,
                **kwargs,
            )
        else:
            backbone = load_backbone(config)

        # replace batch norm by frozen batch norm
        with torch.no_grad():
            replace_batch_norm(backbone)
        self.model = backbone
        self.intermediate_channel_sizes = (
            self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
        )

        backbone_model_type = None
        if config.backbone is not None:
            backbone_model_type = config.backbone
        elif config.backbone_config is not None:
            backbone_model_type = config.backbone_config.model_type
        else:
            raise ValueError("Either `backbone` or `backbone_config` should be provided in the config")

        if "resnet" in backbone_model_type:
            for name, parameter in self.model.named_parameters():
                if config.use_timm_backbone:
                    if "layer2" not in name and "layer3" not in name and "layer4" not in name:
                        parameter.requires_grad_(False)
                else:
                    if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
                        parameter.requires_grad_(False)

    def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
        # send pixel_values through the model to get list of feature maps
        features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps

        out = []
        for feature_map in features:
            # downsample pixel_mask to match shape of corresponding feature_map
            mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
            out.append((feature_map, mask))
        return out


class TestDetrConvModel(nn.Module):
    """
    This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
    """

    def __init__(self, conv_encoder, position_embedding):
        super().__init__()
        self.conv_encoder = conv_encoder
        self.position_embedding = position_embedding

    def forward(self, pixel_values, pixel_mask):
        # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
        out = self.conv_encoder(pixel_values, pixel_mask)
        pos = []
        for feature_map, mask in out:
            # position encoding
            pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))

        return out, pos


class TestDetrSinePositionEmbedding(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
    need paper, generalized to work on images.
    """

    def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, pixel_values, pixel_mask):
        if pixel_mask is None:
            raise ValueError("No pixel mask provided")
        y_embed = pixel_mask.cumsum(1, dtype=pixel_values.dtype)
        x_embed = pixel_mask.cumsum(2, dtype=pixel_values.dtype)
        if self.normalize:
            eps = 1e-6
            y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.embedding_dim, dtype=pixel_values.dtype, device=pixel_values.device)
        dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


class TestDetrLearnedPositionEmbedding(nn.Module):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, embedding_dim=256):
        super().__init__()
        self.row_embeddings = nn.Embedding(50, embedding_dim)
        self.column_embeddings = nn.Embedding(50, embedding_dim)

    def forward(self, pixel_values, pixel_mask=None):
        height, width = pixel_values.shape[-2:]
        width_values = torch.arange(width, device=pixel_values.device)
        height_values = torch.arange(height, device=pixel_values.device)
        x_emb = self.column_embeddings(width_values)
        y_emb = self.row_embeddings(height_values)
        pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)
        pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
        return pos


class TestDetrMultiscaleDeformableAttention(nn.Module):
    """
    Multiscale deformable attention as proposed in Deformable DETR.
    """

    def __init__(self, config: TestDetrConfig, num_heads: int, n_points: int):
        super().__init__()

        self.attn = MultiScaleDeformableAttention()

        if config.d_model % num_heads != 0:
            raise ValueError(
                f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
            )
        dim_per_head = config.d_model // num_heads
        # check if dim_per_head is power of 2
        if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
            warnings.warn(
                "You'd better set embed_dim (d_model) in TestDetrMultiscaleDeformableAttention to make the"
                " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
                " implementation."
            )

        self.im2col_step = 64

        self.d_model = config.d_model
        self.n_levels = config.num_feature_levels
        self.n_heads = num_heads
        self.n_points = n_points

        self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
        self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
        self.value_proj = nn.Linear(config.d_model, config.d_model)
        self.output_proj = nn.Linear(config.d_model, config.d_model)

        self.disable_custom_kernels = config.disable_custom_kernels

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        output_attentions: bool = False,
    ):
        # add position embeddings to the hidden states before projecting to queries and keys
        if position_embeddings is not None:
            hidden_states = self.with_pos_embed(hidden_states, position_embeddings)

        batch_size, num_queries, _ = hidden_states.shape
        batch_size, sequence_length, _ = encoder_hidden_states.shape
        total_elements = sum(height * width for height, width in spatial_shapes_list)
        if total_elements != sequence_length:
            raise ValueError(
                "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
            )

        value = self.value_proj(encoder_hidden_states)
        if attention_mask is not None:
            # we invert the attention_mask
            value = value.masked_fill(~attention_mask[..., None], float(0))
        value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
        sampling_offsets = self.sampling_offsets(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
        )
        attention_weights = self.attention_weights(hidden_states).view(
            batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
        )
        attention_weights = F.softmax(attention_weights, -1).view(
            batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
        )
        # batch_size, num_queries, n_heads, n_levels, n_points, 2
        num_coordinates = reference_points.shape[-1]
        if num_coordinates == 2:
            offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
            sampling_locations = (
                reference_points[:, :, None, :, None, :]
                + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
            )
        elif num_coordinates == 4:
            sampling_locations = (
                reference_points[:, :, None, :, None, :2]
                + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
            )
        else:
            raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")

        output = self.attn(
            value,
            spatial_shapes,
            spatial_shapes_list,
            level_start_index,
            sampling_locations,
            attention_weights,
            self.im2col_step,
        )

        output = self.output_proj(output)

        return output, attention_weights


class TestDetrMultiheadAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper.

    Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper).
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        if self.head_dim * num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {num_heads})."
            )
        self.scaling = self.head_dim**-0.5

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
        return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
        return tensor if position_embeddings is None else tensor + position_embeddings

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_embeddings: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        batch_size, target_len, embed_dim = hidden_states.size()
        # add position embeddings to the hidden states before projecting to queries and keys
        if position_embeddings is not None:
            hidden_states_original = hidden_states
            hidden_states = self.with_pos_embed(hidden_states, position_embeddings)

        # get queries, keys and values
        query_states = self.q_proj(hidden_states) * self.scaling
        key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
        value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)

        proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        source_len = key_states.size(1)

        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
            raise ValueError(
                f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
                f" {attn_weights.size()}"
            )

        # expand attention_mask
        if attention_mask is not None:
            # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
            attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)

        if attention_mask is not None:
            if attention_mask.size() != (batch_size, 1, target_len, source_len):
                raise ValueError(
                    f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
                    f" {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
            attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
            attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (
            batch_size * self.num_heads,
            target_len,
            self.head_dim,
        ):
            raise ValueError(
                f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(batch_size, target_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped


class TestDetrEncoderLayer(nn.Module):
    def __init__(self, config: TestDetrConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = TestDetrMultiscaleDeformableAttention(
            config,
            num_heads=config.encoder_attention_heads,
            n_points=config.encoder_n_points,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        output_attentions: bool = False,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Input to the layer.
            attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
                Attention mask.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Position embeddings, to be added to `hidden_states`.
            reference_points (`torch.FloatTensor`, *optional*):
                Reference points.
            spatial_shapes (`torch.LongTensor`, *optional*):
                Spatial shapes of the backbone feature maps.
            level_start_index (`torch.LongTensor`, *optional*):
                Level start index.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            position_embeddings=position_embeddings,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            spatial_shapes_list=spatial_shapes_list,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)

        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        if self.training:
            if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
                clamp_value = torch.finfo(hidden_states.dtype).max - 1000
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class TestDetrDecoderLayer(nn.Module):
    def __init__(self, config: TestDetrConfig):
        super().__init__()
        self.embed_dim = config.d_model

        # self-attention
        self.self_attn = TestDetrMultiheadAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        # cross-attention
        self.encoder_attn = TestDetrMultiscaleDeformableAttention(
            config,
            num_heads=config.decoder_attention_heads,
            n_points=config.decoder_n_points,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        # feedforward neural networks
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Optional[torch.Tensor] = None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor`):
                Input to the layer of shape `(seq_len, batch, embed_dim)`.
            position_embeddings (`torch.FloatTensor`, *optional*):
                Position embeddings that are added to the queries and keys in the self-attention layer.
            reference_points (`torch.FloatTensor`, *optional*):
                Reference points.
            spatial_shapes (`torch.LongTensor`, *optional*):
                Spatial shapes.
            level_start_index (`torch.LongTensor`, *optional*):
                Level start index.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
                values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Self Attention
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        second_residual = hidden_states

        # Cross-Attention
        cross_attn_weights = None
        hidden_states, cross_attn_weights = self.encoder_attn(
            hidden_states=hidden_states,
            attention_mask=encoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            position_embeddings=position_embeddings,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            spatial_shapes_list=spatial_shapes_list,
            level_start_index=level_start_index,
            output_attentions=output_attentions,
        )

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = second_residual + hidden_states

        hidden_states = self.encoder_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        return outputs


class TestDetrPreTrainedModel(PreTrainedModel):
    config_class = TestDetrConfig
    base_model_prefix = "model"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = [
        r"TestDetrConvEncoder",
        r"TestDetrEncoderLayer",
        r"TestDetrDecoderLayer",
    ]

    def _init_weights(self, module):
        std = self.config.init_std

        if isinstance(module, TestDetrLearnedPositionEmbedding):
            nn.init.uniform_(module.row_embeddings.weight)
            nn.init.uniform_(module.column_embeddings.weight)
        elif isinstance(module, TestDetrMultiscaleDeformableAttention):
            nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
            default_dtype = torch.get_default_dtype()
            thetas = torch.arange(module.n_heads, dtype=torch.int64).to(default_dtype) * (
                2.0 * math.pi / module.n_heads
            )
            grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
            grid_init = (
                (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
                .view(module.n_heads, 1, 1, 2)
                .repeat(1, module.n_levels, module.n_points, 1)
            )
            for i in range(module.n_points):
                grid_init[:, :, i, :] *= i + 1
            with torch.no_grad():
                module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
            nn.init.constant_(module.attention_weights.weight.data, 0.0)
            nn.init.constant_(module.attention_weights.bias.data, 0.0)
            nn.init.xavier_uniform_(module.value_proj.weight.data)
            nn.init.constant_(module.value_proj.bias.data, 0.0)
            nn.init.xavier_uniform_(module.output_proj.weight.data)
            nn.init.constant_(module.output_proj.bias.data, 0.0)
        elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        if hasattr(module, "reference_points") and not self.config.two_stage:
            nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
            nn.init.constant_(module.reference_points.bias.data, 0.0)
        if hasattr(module, "level_embed"):
            nn.init.normal_(module.level_embed)


class TestDetrEncoder(TestDetrPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
    [`TestDetrEncoderLayer`].

    The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.

    Args:
        config: TestDetrConfig
    """

    def __init__(self, config: TestDetrConfig):
        super().__init__(config)
        self.gradient_checkpointing = False

        self.dropout = config.dropout
        self.layers = nn.ModuleList([TestDetrEncoderLayer(config) for _ in range(config.encoder_layers)])

        # Initialize weights and apply final processing
        self.post_init()

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        """
        Get reference points for each feature map. Used in decoder.

        Args:
            spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of each feature map.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
                Valid ratios of each feature map.
            device (`torch.device`):
                Device on which to create the tensors.
        Returns:
            `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
        """
        reference_points_list = []
        for level, (height, width) in enumerate(spatial_shapes):
            ref_y, ref_x = meshgrid(
                torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
                torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
                indexing="ij",
            )
            # TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def forward(
        self,
        inputs_embeds=None,
        attention_mask=None,
        position_embeddings=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        valid_ratios=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
                - 1 for pixel features that are real (i.e. **not masked**),
                - 0 for pixel features that are padding (i.e. **masked**).
                [What are attention masks?](../glossary#attention-mask)
            position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of each feature map.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
                Starting index of each feature map.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
                Ratio of valid area in each feature level.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        hidden_states = inputs_embeds
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        spatial_shapes_tuple = tuple(spatial_shapes_list)
        reference_points = self.get_reference_points(spatial_shapes_tuple, valid_ratios, device=inputs_embeds.device)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_embeddings,
                    reference_points,
                    spatial_shapes,
                    spatial_shapes_list,
                    level_start_index,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    position_embeddings=position_embeddings,
                    reference_points=reference_points,
                    spatial_shapes=spatial_shapes,
                    spatial_shapes_list=spatial_shapes_list,
                    level_start_index=level_start_index,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


def inverse_sigmoid(x, eps=1e-5):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


class TestDetrDecoder(TestDetrPreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TestDetrDecoderLayer`].

    The decoder updates the query embeddings through multiple self-attention and cross-attention layers.

    Some tweaks for Deformable DETR:

    - `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
    - it also returns a stack of intermediate outputs and reference points from all decoding layers.

    Args:
        config: TestDetrConfig
    """

    def __init__(self, config: TestDetrConfig):
        super().__init__(config)

        self.dropout = config.dropout
        self.layers = nn.ModuleList([TestDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.gradient_checkpointing = False

        # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        position_embeddings=None,
        reference_points=None,
        spatial_shapes=None,
        spatial_shapes_list=None,
        level_start_index=None,
        valid_ratios=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
                The query embeddings that are passed into the decoder.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
                in `[0, 1]`:
                - 1 for pixels that are real (i.e. **not masked**),
                - 0 for pixels that are padding (i.e. **masked**).
            position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
                Position embeddings that are added to the queries and keys in each self-attention layer.
            reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
                Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
            spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
                Spatial shapes of the feature maps.
            level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
                Indexes for the start of each feature level. In range `[0, sequence_length]`.
            valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
                Ratio of valid area in each feature level.

            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        intermediate = ()
        intermediate_reference_points = ()

        for idx, decoder_layer in enumerate(self.layers):
            num_coordinates = reference_points.shape[-1]
            if num_coordinates == 4:
                reference_points_input = (
                    reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
                )
            elif reference_points.shape[-1] == 2:
                reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
            else:
                raise ValueError("Reference points' last dimension must be of size 2")

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    position_embeddings,
                    reference_points_input,
                    spatial_shapes,
                    spatial_shapes_list,
                    level_start_index,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    position_embeddings=position_embeddings,
                    encoder_hidden_states=encoder_hidden_states,
                    reference_points=reference_points_input,
                    spatial_shapes=spatial_shapes,
                    spatial_shapes_list=spatial_shapes_list,
                    level_start_index=level_start_index,
                    encoder_attention_mask=encoder_attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            # hack implementation for iterative bounding box refinement
            if self.bbox_embed is not None:
                tmp = self.bbox_embed[idx](hidden_states)
                num_coordinates = reference_points.shape[-1]
                if num_coordinates == 4:
                    new_reference_points = tmp + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                elif num_coordinates == 2:
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    raise ValueError(
                        f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
                    )
                reference_points = new_reference_points.detach()

            intermediate += (hidden_states,)
            intermediate_reference_points += (reference_points,)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # Keep batch_size as first dimension
        intermediate = torch.stack(intermediate, dim=1)
        intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    intermediate,
                    intermediate_reference_points,
                    all_hidden_states,
                    all_self_attns,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return TestDetrDecoderOutput(
            last_hidden_state=hidden_states,
            intermediate_hidden_states=intermediate,
            intermediate_reference_points=intermediate_reference_points,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


def build_position_encoding(config):
    n_steps = config.d_model // 2
    if config.position_embedding_type == "sine":
        # TODO find a better way of exposing other arguments
        position_embedding = TestDetrSinePositionEmbedding(n_steps, normalize=True)
    elif config.position_embedding_type == "learned":
        position_embedding = TestDetrLearnedPositionEmbedding(n_steps)
    else:
        raise ValueError(f"Not supported {config.position_embedding_type}")

    return position_embedding


TEST_DETR_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`TestDetrConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

TEST_DETR_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it.

            Pixel values can be obtained using [`AutoImageProcessor`]. See [`TestDetrImageProcessor.__call__`]
            for details.

        pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
            Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:

            - 1 for pixels that are real (i.e. **not masked**),
            - 0 for pixels that are padding (i.e. **masked**).

            [What are attention masks?](../glossary#attention-mask)

        decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
            Not used by default. Can be used to mask object queries.
        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
            can choose to directly pass a flattened representation of an image.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
            Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
            embedded representation.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    """
    The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
    hidden-states without any specific head on top.
    """,
    TEST_DETR_START_DOCSTRING,
)
class TestDetrModel(TestDetrPreTrainedModel):
    def __init__(self, config: TestDetrConfig):
        super().__init__(config)

        # Create backbone + positional encoding
        backbone = TestDetrConvEncoder(config)
        position_embeddings = build_position_encoding(config)
        self.backbone = TestDetrConvModel(backbone, position_embeddings)

        # Create input projection layers
        if config.num_feature_levels > 1:
            num_backbone_outs = len(backbone.intermediate_channel_sizes)
            input_proj_list = []
            for _ in range(num_backbone_outs):
                in_channels = backbone.intermediate_channel_sizes[_]
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, config.d_model, kernel_size=1),
                        nn.GroupNorm(32, config.d_model),
                    )
                )
            for _ in range(config.num_feature_levels - num_backbone_outs):
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(
                            in_channels,
                            config.d_model,
                            kernel_size=3,
                            stride=2,
                            padding=1,
                        ),
                        nn.GroupNorm(32, config.d_model),
                    )
                )
                in_channels = config.d_model
            self.input_proj = nn.ModuleList(input_proj_list)
        else:
            self.input_proj = nn.ModuleList(
                [
                    nn.Sequential(
                        nn.Conv2d(
                            backbone.intermediate_channel_sizes[-1],
                            config.d_model,
                            kernel_size=1,
                        ),
                        nn.GroupNorm(32, config.d_model),
                    )
                ]
            )

        if not config.two_stage:
            self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2)

        self.encoder = TestDetrEncoder(config)
        self.decoder = TestDetrDecoder(config)

        self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))

        if config.two_stage:
            self.enc_output = nn.Linear(config.d_model, config.d_model)
            self.enc_output_norm = nn.LayerNorm(config.d_model)
            self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2)
            self.pos_trans_norm = nn.LayerNorm(config.d_model * 2)
        else:
            self.reference_points = nn.Linear(config.d_model, 2)

        self.post_init()

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def freeze_backbone(self):
        for name, param in self.backbone.conv_encoder.model.named_parameters():
            param.requires_grad_(False)

    def unfreeze_backbone(self):
        for name, param in self.backbone.conv_encoder.model.named_parameters():
            param.requires_grad_(True)

    def get_valid_ratio(self, mask, dtype=torch.float32):
        """Get the valid ratio of all feature maps."""

        _, height, width = mask.shape
        valid_height = torch.sum(mask[:, :, 0], 1)
        valid_width = torch.sum(mask[:, 0, :], 1)
        valid_ratio_height = valid_height.to(dtype) / height
        valid_ratio_width = valid_width.to(dtype) / width
        valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
        return valid_ratio

    def get_proposal_pos_embed(self, proposals):
        """Get the position embedding of the proposals."""

        num_pos_feats = self.config.d_model // 2
        temperature = 10000
        scale = 2 * math.pi

        dim_t = torch.arange(num_pos_feats, dtype=proposals.dtype, device=proposals.device)
        dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
        # batch_size, num_queries, 4
        proposals = proposals.sigmoid() * scale
        # batch_size, num_queries, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
        return pos

    def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
        """Generate the encoder output proposals from encoded enc_output.

        Args:
            enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
            padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
            spatial_shapes (List[Tuple[int, int]]): Spatial shapes of the feature maps.

        Returns:
            `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
                - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
                  directly predict a bounding box. (without the need of a decoder)
                - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
                  sigmoid.
        """
        batch_size = enc_output.shape[0]
        proposals = []
        _cur = 0
        for level, (height, width) in enumerate(spatial_shapes):
            mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
            valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = meshgrid(
                torch.linspace(
                    0,
                    height - 1,
                    height,
                    dtype=enc_output.dtype,
                    device=enc_output.device,
                ),
                torch.linspace(
                    0,
                    width - 1,
                    width,
                    dtype=enc_output.dtype,
                    device=enc_output.device,
                ),
                indexing="ij",
            )
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
            width_height = torch.ones_like(grid) * 0.05 * (2.0**level)
            proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4)
            proposals.append(proposal)
            _cur += height * width
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
        output_proposals = torch.log(output_proposals / (1 - output_proposals))  # inverse sigmoid
        output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
        output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))

        # assign each pixel as an object query
        object_query = enc_output
        object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
        object_query = object_query.masked_fill(~output_proposals_valid, float(0))
        object_query = self.enc_output_norm(self.enc_output(object_query))
        return object_query, output_proposals

    @add_start_docstrings_to_model_forward(TEST_DETR_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TestDetrModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        pixel_mask: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.FloatTensor] = None,
        encoder_outputs: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], TestDetrModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, TestDetrModel
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
        >>> model = TestDetrModel.from_pretrained("SenseTime/deformable-detr")

        >>> inputs = image_processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)

        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 300, 256]
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size, num_channels, height, width = pixel_values.shape
        device = pixel_values.device

        if pixel_mask is None:
            pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)

        # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
        # First, sent pixel_values + pixel_mask through Backbone to obtain the features
        # which is a list of tuples
        features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)

        # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
        sources = []
        masks = []
        for level, (source, mask) in enumerate(features):
            sources.append(self.input_proj[level](source))
            masks.append(mask)
            if mask is None:
                raise ValueError("No attention mask was provided")

        # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
        if self.config.num_feature_levels > len(sources):
            _len_sources = len(sources)
            for level in range(_len_sources, self.config.num_feature_levels):
                if level == _len_sources:
                    source = self.input_proj[level](features[-1][0])
                else:
                    source = self.input_proj[level](sources[-1])
                mask = nn.functional.interpolate(pixel_mask[None].to(pixel_values.dtype), size=source.shape[-2:]).to(
                    torch.bool
                )[0]
                pos_l = self.backbone.position_embedding(source, mask).to(source.dtype)
                sources.append(source)
                masks.append(mask)
                position_embeddings_list.append(pos_l)

        # Create queries
        query_embeds = None
        if not self.config.two_stage:
            query_embeds = self.query_position_embeddings.weight

        # Prepare encoder inputs (by flattening)
        source_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes_list = []
        for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
            batch_size, num_channels, height, width = source.shape
            spatial_shape = (height, width)
            spatial_shapes_list.append(spatial_shape)
            source = source.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            source_flatten.append(source)
            mask_flatten.append(mask)
        source_flatten = torch.cat(source_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)

        # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
        # Also provide spatial_shapes, level_start_index and valid_ratios
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                inputs_embeds=source_flatten,
                attention_mask=mask_flatten,
                position_embeddings=lvl_pos_embed_flatten,
                spatial_shapes=spatial_shapes,
                spatial_shapes_list=spatial_shapes_list,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # Fifth, prepare decoder inputs
        batch_size, _, num_channels = encoder_outputs[0].shape
        enc_outputs_class = None
        enc_outputs_coord_logits = None
        if self.config.two_stage:
            object_query_embedding, output_proposals = self.gen_encoder_output_proposals(
                encoder_outputs[0], ~mask_flatten, spatial_shapes_list
            )

            # hack implementation for two-stage Deformable DETR
            # apply a detection head to each pixel (A.4 in paper)
            # linear projection for bounding box binary classification (i.e. foreground and background)
            enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding)
            # 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
            delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding)
            enc_outputs_coord_logits = delta_bbox + output_proposals

            # only keep top scoring `config.two_stage_num_proposals` proposals
            topk = self.config.two_stage_num_proposals
            topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
            topk_coords_logits = torch.gather(
                enc_outputs_coord_logits,
                1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
            )

            topk_coords_logits = topk_coords_logits.detach()
            reference_points = topk_coords_logits.sigmoid()
            init_reference_points = reference_points
            pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits)))
            query_embed, target = torch.split(pos_trans_out, num_channels, dim=2)
        else:
            query_embed, target = torch.split(query_embeds, num_channels, dim=1)
            query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1)
            target = target.unsqueeze(0).expand(batch_size, -1, -1)
            reference_points = self.reference_points(query_embed).sigmoid()
            init_reference_points = reference_points

        decoder_outputs = self.decoder(
            inputs_embeds=target,
            position_embeddings=query_embed,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            spatial_shapes_list=spatial_shapes_list,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None)
            tuple_outputs = (init_reference_points,) + decoder_outputs + encoder_outputs + enc_outputs

            return tuple_outputs

        return TestDetrModelOutput(
            init_reference_points=init_reference_points,
            last_hidden_state=decoder_outputs.last_hidden_state,
            intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
            intermediate_reference_points=decoder_outputs.intermediate_reference_points,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            enc_outputs_class=enc_outputs_class,
            enc_outputs_coord_logits=enc_outputs_coord_logits,
        )