import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM from sentence_transformers import SentenceTransformer import gradio as gr import faiss import numpy as np # Load models lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection") lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection") trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") # Language mappings id2lang = lang_detect_model.config.id2label xlm_to_nllb = { "en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn", "ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab", "sa": "san_Deva" } nllb_langs = { "eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi", "spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil", "tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese", "arb_Arab": "Arabic", "san_Deva": "Sanskrit" } # Sample knowledge corpus corpus = [ "धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः", "Dharma when destroyed, destroys; when protected, protects.", "The moon affects tides and mood, according to Jyotisha", "One should eat according to the season – Rituacharya", "Balance of Tridosha is health – Ayurveda principle", "Ethics in Mahabharata reflect situational dharma", "Meditation improves memory and mental clarity", "Jyotisha links planetary motion with life patterns" ] # Semantic index corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True) dimension = corpus_embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(corpus_embeddings) # Language Detection def detect_language(text): inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = lang_detect_model(**inputs) probs = F.softmax(outputs.logits, dim=1) pred = torch.argmax(probs, dim=1).item() return id2lang[pred] # Translation def translate(text, src_code, tgt_code): trans_tokenizer.src_lang = src_code encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True) target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0] generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id) return trans_tokenizer.decode(generated[0], skip_special_tokens=True) # Semantic Search def search_semantic(query, top_k=3): query_embedding = embed_model.encode([query]) distances, indices = index.search(query_embedding, top_k) results = [] for i, idx in enumerate(indices[0]): results.append(f"{i+1}. {corpus[idx]} (Score: {distances[0][i]:.2f})") return "\n".join(results) # Main function def pipeline(text, target_lang_code): if not text.strip(): return "Empty input", "", "", "" detected = detect_language(text) src_code = xlm_to_nllb.get(detected, "eng_Latn") translated = translate(text, src_code, target_lang_code) matches = search_semantic(translated) return text, detected, translated, matches # Language Dropdown lang_choices = list(nllb_langs.keys()) # Gradio UI iface = gr.Interface( fn=pipeline, inputs=[ gr.Textbox(label="Enter your sentence"), gr.Dropdown(choices=lang_choices, value="san_Deva", label="Target Language") ], outputs=[ gr.Textbox(label="Input"), gr.Textbox(label="Detected Language"), gr.Textbox(label="Translated Output"), gr.Textbox(label="Semantic Matches") ], title="🌍 Sanskrit Translator + Semantic Search" ) iface.launch() import gradio as gr # Dropdown options lang_options = list(nllb_langs.keys()) # Voice Input Interface def voice_pipeline(audio, target_code): import whisper model = whisper.load_model("base") result = model.transcribe(audio) text = result["text"] detected = detect_language(text) src_code = xlm_to_nllb.get(detected, "eng_Latn") translated = translate(text, src_code, target_code) matches = search_semantic(translated) matches_text = "\n".join([f"{i+1}. {txt} (Score: {score:.2f})" for i, (txt, score) in enumerate(matches)]) return text, detected, translated, matches_text voice_tab = gr.Interface( fn=voice_pipeline, inputs=[ gr.Audio(source="microphone", type="filepath", label="🎙️ Speak Something"), gr.Dropdown(lang_options, value="san_Deva", label="🌐 Target Language"), ], outputs=[ gr.Textbox(label="📝 Detected Text"), gr.Textbox(label="🌐 Detected Language"), gr.Textbox(label="🗣️ Translated Output"), gr.Textbox(label="🧠 Semantic Matches"), ] ) # Tabs gr.TabbedInterface( [voice_tab, text_tab], ["🎤 Voice Input", "📝 Text Input"] ).launch()