DheivaCodes commited on
Commit
16e7329
·
verified ·
1 Parent(s): 0dfa6a6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
4
+ from sentence_transformers import SentenceTransformer
5
+ import gradio as gr
6
+ import faiss
7
+ import numpy as np
8
+
9
+ # Load models
10
+ lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
11
+ lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
12
+ trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
13
+ trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
14
+ embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
15
+
16
+ # Language mappings
17
+ id2lang = lang_detect_model.config.id2label
18
+ xlm_to_nllb = {
19
+ "en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn",
20
+ "ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab",
21
+ "sa": "san_Deva"
22
+ }
23
+ nllb_langs = {
24
+ "eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi",
25
+ "spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil",
26
+ "tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese",
27
+ "arb_Arab": "Arabic", "san_Deva": "Sanskrit"
28
+ }
29
+
30
+ # Sample knowledge corpus
31
+ corpus = [
32
+ "धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः",
33
+ "Dharma when destroyed, destroys; when protected, protects.",
34
+ "The moon affects tides and mood, according to Jyotisha",
35
+ "One should eat according to the season – Rituacharya",
36
+ "Balance of Tridosha is health – Ayurveda principle",
37
+ "Ethics in Mahabharata reflect situational dharma",
38
+ "Meditation improves memory and mental clarity",
39
+ "Jyotisha links planetary motion with life patterns"
40
+ ]
41
+
42
+ # Semantic index
43
+ corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True)
44
+ dimension = corpus_embeddings.shape[1]
45
+ index = faiss.IndexFlatL2(dimension)
46
+ index.add(corpus_embeddings)
47
+
48
+ # Language Detection
49
+ def detect_language(text):
50
+ inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
51
+ with torch.no_grad():
52
+ outputs = lang_detect_model(**inputs)
53
+ probs = F.softmax(outputs.logits, dim=1)
54
+ pred = torch.argmax(probs, dim=1).item()
55
+ return id2lang[pred]
56
+
57
+ # Translation
58
+ def translate(text, src_code, tgt_code):
59
+ trans_tokenizer.src_lang = src_code
60
+ encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
61
+ target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0]
62
+ generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id)
63
+ return trans_tokenizer.decode(generated[0], skip_special_tokens=True)
64
+
65
+ # Semantic Search
66
+ def search_semantic(query, top_k=3):
67
+ query_embedding = embed_model.encode([query])
68
+ distances, indices = index.search(query_embedding, top_k)
69
+ results = []
70
+ for i, idx in enumerate(indices[0]):
71
+ results.append(f"{i+1}. {corpus[idx]} (Score: {distances[0][i]:.2f})")
72
+ return "\n".join(results)
73
+
74
+ # Main function
75
+ def pipeline(text, target_lang_code):
76
+ if not text.strip():
77
+ return "Empty input", "", "", ""
78
+ detected = detect_language(text)
79
+ src_code = xlm_to_nllb.get(detected, "eng_Latn")
80
+ translated = translate(text, src_code, target_lang_code)
81
+ matches = search_semantic(translated)
82
+ return text, detected, translated, matches
83
+
84
+ # Language Dropdown
85
+ lang_choices = list(nllb_langs.keys())
86
+
87
+ # Gradio UI
88
+ iface = gr.Interface(
89
+ fn=pipeline,
90
+ inputs=[
91
+ gr.Textbox(label="Enter your sentence"),
92
+ gr.Dropdown(choices=lang_choices, value="san_Deva", label="Target Language")
93
+ ],
94
+ outputs=[
95
+ gr.Textbox(label="Input"),
96
+ gr.Textbox(label="Detected Language"),
97
+ gr.Textbox(label="Translated Output"),
98
+ gr.Textbox(label="Semantic Matches")
99
+ ],
100
+ title="🌍 Sanskrit Translator + Semantic Search"
101
+ )
102
+
103
+ iface.launch()