|
import gradio as gr |
|
from pipeline import preprocessing_pipeline, conversational_rag |
|
from pipeline import system_message, user_message |
|
from haystack.dataclasses import ChatMessage |
|
import time |
|
import os |
|
|
|
def process_files_into_docs(files, progress=gr.Progress()): |
|
if isinstance(files, dict): |
|
files = [files] |
|
|
|
if not files: |
|
return 'No file uploaded!' |
|
|
|
preprocessing_pipeline.run({'file_type_router': {'sources': files}}) |
|
return "Database created🤗🤗" |
|
|
|
def rag(history, question): |
|
if history is None: |
|
history = [] |
|
|
|
messages = [system_message, user_message] |
|
res = conversational_rag.run( |
|
data = { |
|
'query_rephrase_prompt_builder' : {'query': question}, |
|
'prompt_builder': {'template': messages, 'query': question}, |
|
'memory_joiner': {'values': [ChatMessage.from_user(question)]} |
|
}, |
|
include_outputs_from=['llm', 'query_rephrase_llm'] |
|
) |
|
|
|
bot_message = res['llm']['replies'][0].content |
|
streamed_message = "" |
|
|
|
for token in bot_message.split(): |
|
streamed_message += f"{token} " |
|
yield history + [(question, streamed_message.strip())], " " |
|
time.sleep(0.05) |
|
|
|
history.append((question, bot_message)) |
|
yield history, " " |
|
|
|
EXAMPLE_FILE = "RAG Survey.pdf" |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.HTML("<center><h1>TalkToFiles - Query your documents! 📂📄</h1></center>") |
|
gr.Markdown("""##### This AI chatbot🤖 can help you chat with your documents. Can upload <b>Text(.txt), PDF(.pdf) and Markdown(.md)</b> files. |
|
<b>Please do not upload confidential documents.</b>""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=86): |
|
gr.Markdown("""#### ***Step 1 - Upload Documents and Initialize RAG pipeline***</br> Can upload Multiple documents""") |
|
|
|
with gr.Row(): |
|
file_input = gr.File( |
|
label='Upload Files', |
|
file_count='multiple', |
|
file_types=['.pdf', '.txt', '.md'], |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
process_files = gr.Button('Create Document store') |
|
|
|
with gr.Row(): |
|
result = gr.Textbox(label="Document store", value='Document store not initialized') |
|
|
|
|
|
process_files.click( |
|
fn=process_files_into_docs, |
|
inputs=file_input, |
|
outputs=result, |
|
show_progress=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(scale=200): |
|
gr.Markdown("""#### ***Step 2 - Chat with your docs*** """) |
|
chatbot = gr.Chatbot(label='ChatBot', type="messages") |
|
user_input = gr.Textbox(label='Enter your query', placeholder='Type here...') |
|
|
|
with gr.Row(): |
|
submit_button = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([user_input, chatbot], value='Clear') |
|
|
|
submit_button.click( |
|
rag, |
|
inputs=[chatbot, user_input], |
|
outputs=[chatbot, user_input] |
|
) |
|
|
|
|
|
demo.launch() |