Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,138 +2,86 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
from transformers import pipeline
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from pyannote.audio import Pipeline as PyannotePipeline
|
8 |
from dia.model import Dia
|
9 |
from dac.utils import load_model as load_dac_model
|
10 |
|
11 |
-
#
|
12 |
-
HF_TOKEN
|
|
|
13 |
|
14 |
-
print("Loading models...")
|
15 |
-
|
16 |
-
# 1. Load RVQ Codec (Descript Audio Codec)
|
17 |
print("Loading RVQ Codec...")
|
18 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
19 |
rvq.eval()
|
20 |
if torch.cuda.is_available():
|
21 |
rvq = rvq.to("cuda")
|
22 |
|
23 |
-
|
24 |
-
print("Loading VAD...")
|
25 |
vad_pipe = PyannotePipeline.from_pretrained(
|
26 |
"pyannote/voice-activity-detection",
|
27 |
use_auth_token=HF_TOKEN
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
print("Loading Ultravox...")
|
32 |
ultravox_pipe = pipeline(
|
33 |
model="fixie-ai/ultravox-v0_4",
|
34 |
trust_remote_code=True,
|
35 |
-
device_map=
|
36 |
torch_dtype=torch.float16
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
print("Loading Audio Diffusion...")
|
41 |
diff_pipe = DiffusionPipeline.from_pretrained(
|
42 |
"teticio/audio-diffusion-instrumental-hiphop-256",
|
43 |
torch_dtype=torch.float16
|
44 |
).to("cuda")
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
print("All models loaded successfully!")
|
52 |
|
53 |
-
# Audio processing function
|
54 |
def process_audio(audio):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
prosody_result = diff_pipe(raw_audio=decoded)
|
82 |
-
if "audios" in prosody_result:
|
83 |
-
prosody_audio = prosody_result["audios"][0]
|
84 |
-
else:
|
85 |
-
prosody_audio = decoded
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Diffusion processing error: {e}")
|
88 |
-
prosody_audio = decoded
|
89 |
-
|
90 |
-
# Dia TTS generation
|
91 |
-
tts_output = dia.generate(f"[emotion:neutral] {text}")
|
92 |
-
|
93 |
-
# Convert to numpy and normalize
|
94 |
-
if torch.is_tensor(tts_output):
|
95 |
-
tts_np = tts_output.squeeze().cpu().numpy()
|
96 |
-
else:
|
97 |
-
tts_np = tts_output
|
98 |
-
|
99 |
-
# Normalize audio output
|
100 |
-
if len(tts_np) > 0:
|
101 |
-
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95
|
102 |
-
|
103 |
-
return (sr, tts_np), text
|
104 |
-
|
105 |
-
except Exception as e:
|
106 |
-
print(f"Error in process_audio: {e}")
|
107 |
-
return None, f"Processing error: {str(e)}"
|
108 |
-
|
109 |
-
# Gradio Interface
|
110 |
with gr.Blocks(title="Maya AI π") as demo:
|
111 |
-
gr.Markdown("
|
112 |
-
gr.
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
sources=["microphone"],
|
118 |
-
type="numpy",
|
119 |
-
label="Record Your Voice"
|
120 |
-
)
|
121 |
-
send_btn = gr.Button("Send", variant="primary")
|
122 |
-
|
123 |
-
with gr.Column():
|
124 |
-
audio_out = gr.Audio(label="AI Response")
|
125 |
-
text_out = gr.Textbox(
|
126 |
-
label="Generated Text",
|
127 |
-
lines=3,
|
128 |
-
placeholder="AI response will appear here..."
|
129 |
-
)
|
130 |
-
|
131 |
-
# Event handler
|
132 |
-
send_btn.click(
|
133 |
-
fn=process_audio,
|
134 |
-
inputs=audio_in,
|
135 |
-
outputs=[audio_out, text_out]
|
136 |
-
)
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from transformers import pipeline, AutoModel
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from pyannote.audio import Pipeline as PyannotePipeline
|
8 |
from dia.model import Dia
|
9 |
from dac.utils import load_model as load_dac_model
|
10 |
|
11 |
+
# 1. Retrieve HF token and set device mapping
|
12 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
13 |
+
device_map = "auto" # auto-shard models across 4ΓL4 GPUs
|
14 |
|
|
|
|
|
|
|
15 |
print("Loading RVQ Codec...")
|
16 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
17 |
rvq.eval()
|
18 |
if torch.cuda.is_available():
|
19 |
rvq = rvq.to("cuda")
|
20 |
|
21 |
+
print("Loading VAD pipeline...")
|
|
|
22 |
vad_pipe = PyannotePipeline.from_pretrained(
|
23 |
"pyannote/voice-activity-detection",
|
24 |
use_auth_token=HF_TOKEN
|
25 |
)
|
26 |
|
27 |
+
print("Loading Ultravox pipeline...")
|
|
|
28 |
ultravox_pipe = pipeline(
|
29 |
model="fixie-ai/ultravox-v0_4",
|
30 |
trust_remote_code=True,
|
31 |
+
device_map=device_map,
|
32 |
torch_dtype=torch.float16
|
33 |
)
|
34 |
|
35 |
+
print("Loading Audio Diffusion model...")
|
|
|
36 |
diff_pipe = DiffusionPipeline.from_pretrained(
|
37 |
"teticio/audio-diffusion-instrumental-hiphop-256",
|
38 |
torch_dtype=torch.float16
|
39 |
).to("cuda")
|
40 |
|
41 |
+
print("Loading Dia TTS (sharded across GPUs)...")
|
42 |
+
dia = Dia.from_pretrained(
|
43 |
+
"nari-labs/Dia-1.6B",
|
44 |
+
device_map=device_map,
|
45 |
+
torch_dtype=torch.float16,
|
46 |
+
trust_remote_code=True
|
47 |
+
)
|
48 |
|
49 |
print("All models loaded successfully!")
|
50 |
|
|
|
51 |
def process_audio(audio):
|
52 |
+
sr, array = audio
|
53 |
+
array = array.numpy() if torch.is_tensor(array) else array
|
54 |
+
|
55 |
+
# 1. Voice activity detection
|
56 |
+
vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr})
|
57 |
+
|
58 |
+
# 2. RVQ encode/decode
|
59 |
+
x = torch.tensor(array).unsqueeze(0).to("cuda")
|
60 |
+
codes = rvq.encode(x)
|
61 |
+
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
62 |
+
|
63 |
+
# 3. Ultravox ASR β text
|
64 |
+
out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
65 |
+
text = out.get("text", "")
|
66 |
+
|
67 |
+
# 4. Prosody diffusion
|
68 |
+
pros = diff_pipe(raw_audio=decoded)["audios"][0]
|
69 |
+
|
70 |
+
# 5. Dia TTS synthesis
|
71 |
+
tts = dia.generate(f"[emotion:neutral] {text}")
|
72 |
+
tts_np = tts.squeeze().cpu().numpy()
|
73 |
+
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 if tts_np.size else tts_np
|
74 |
+
|
75 |
+
return (sr, tts_np), text
|
76 |
+
|
77 |
+
# Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Blocks(title="Maya AI π") as demo:
|
79 |
+
gr.Markdown("## Maya-AI Supernatural Conversational Agent")
|
80 |
+
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
81 |
+
send_btn = gr.Button("Send")
|
82 |
+
audio_out = gr.Audio(label="AI Response")
|
83 |
+
text_out = gr.Textbox(label="Generated Text")
|
84 |
+
send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
demo.launch()
|