Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,280 +1,73 @@
|
|
1 |
-
import os
|
2 |
-
import
|
3 |
-
from fastapi import FastAPI, UploadFile, File
|
4 |
import gradio as gr
|
5 |
-
import nemo.collections.asr as nemo_asr
|
6 |
-
from speechbrain.pretrained import EncoderClassifier
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
import soundfile as sf
|
9 |
import torch
|
10 |
import numpy as np
|
11 |
-
|
12 |
-
import
|
13 |
-
import
|
14 |
-
from datetime import datetime
|
15 |
|
16 |
-
# Initialize FastAPI
|
17 |
app = FastAPI()
|
18 |
-
|
19 |
-
# Global variables for models
|
20 |
-
asr_model = None
|
21 |
-
emotion_model = None
|
22 |
-
llm_model = None
|
23 |
-
llm_tokenizer = None
|
24 |
conversation_history = {}
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Load emotion recognition model
|
37 |
-
print("Loading emotion model...")
|
38 |
-
emotion_model = EncoderClassifier.from_hparams(
|
39 |
-
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
40 |
-
savedir="./emotion_model_cache"
|
41 |
-
)
|
42 |
-
print("Emotion model loaded successfully")
|
43 |
-
|
44 |
-
# Load LLM for conversation
|
45 |
-
print("Loading LLM...")
|
46 |
-
model_name = "microsoft/DialoGPT-medium" # Lighter alternative to Vicuna
|
47 |
-
llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
-
llm_model = AutoModelForCausalLM.from_pretrained(
|
49 |
-
model_name,
|
50 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
51 |
-
device_map="auto" if torch.cuda.is_available() else None
|
52 |
-
)
|
53 |
-
|
54 |
-
# Add padding token if not present
|
55 |
-
if llm_tokenizer.pad_token is None:
|
56 |
-
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
57 |
-
|
58 |
-
print("All models loaded successfully")
|
59 |
-
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Error loading models: {str(e)}")
|
62 |
-
raise e
|
63 |
-
|
64 |
-
def transcribe_audio(audio_path: str) -> Tuple[str, str]:
|
65 |
-
"""Transcribe audio and detect emotion"""
|
66 |
-
try:
|
67 |
-
# ASR transcription
|
68 |
-
transcription = asr_model.transcribe([audio_path])
|
69 |
-
text = transcription[0].text if hasattr(transcription[0], 'text') else str(transcription[0])
|
70 |
-
|
71 |
-
# Emotion detection
|
72 |
-
emotion_result = emotion_model.classify_file(audio_path)
|
73 |
-
emotion = emotion_result[0] if isinstance(emotion_result, list) else str(emotion_result)
|
74 |
-
|
75 |
-
return text, emotion
|
76 |
-
|
77 |
-
except Exception as e:
|
78 |
-
print(f"Error in transcription: {str(e)}")
|
79 |
-
return f"Error: {str(e)}", "unknown"
|
80 |
-
|
81 |
-
def generate_response(user_text: str, emotion: str, user_id: str) -> str:
|
82 |
-
"""Generate contextual response based on user input and emotion"""
|
83 |
-
try:
|
84 |
-
# Get conversation history
|
85 |
-
if user_id not in conversation_history:
|
86 |
-
conversation_history[user_id] = []
|
87 |
-
|
88 |
-
# Add emotion context to the input
|
89 |
-
emotional_context = f"[User is feeling {emotion}] {user_text}"
|
90 |
-
|
91 |
-
# Encode input with conversation history
|
92 |
-
conversation_history[user_id].append(emotional_context)
|
93 |
-
|
94 |
-
# Keep only last 5 exchanges to manage memory
|
95 |
-
if len(conversation_history[user_id]) > 10:
|
96 |
-
conversation_history[user_id] = conversation_history[user_id][-10:]
|
97 |
-
|
98 |
-
# Create input for the model
|
99 |
-
input_text = " ".join(conversation_history[user_id][-3:]) # Last 3 exchanges
|
100 |
-
|
101 |
-
# Tokenize and generate
|
102 |
-
inputs = llm_tokenizer.encode(input_text, return_tensors="pt")
|
103 |
-
if torch.cuda.is_available():
|
104 |
-
inputs = inputs.cuda()
|
105 |
-
|
106 |
-
with torch.no_grad():
|
107 |
-
outputs = llm_model.generate(
|
108 |
-
inputs,
|
109 |
-
max_new_tokens=100,
|
110 |
-
num_return_sequences=1,
|
111 |
-
temperature=0.7,
|
112 |
-
do_sample=True,
|
113 |
-
pad_token_id=llm_tokenizer.eos_token_id
|
114 |
-
)
|
115 |
-
|
116 |
-
# Decode response
|
117 |
-
response = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
118 |
-
|
119 |
-
# Extract only the new part of the response
|
120 |
-
response = response[len(input_text):].strip()
|
121 |
-
|
122 |
-
# Add to conversation history
|
123 |
-
conversation_history[user_id].append(response)
|
124 |
-
|
125 |
-
return response if response else "I understand your feelings. How can I help you today?"
|
126 |
-
|
127 |
-
except Exception as e:
|
128 |
-
print(f"Error generating response: {str(e)}")
|
129 |
-
return "I'm having trouble processing that right now. Could you try again?"
|
130 |
|
131 |
-
def
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
if audio_file is None:
|
137 |
-
return "No audio file provided", "", "", user_id
|
138 |
-
|
139 |
-
try:
|
140 |
-
# Save uploaded audio to temporary file
|
141 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
142 |
-
# Handle different audio input formats
|
143 |
-
if hasattr(audio_file, 'name'):
|
144 |
-
# File upload case
|
145 |
-
audio_path = audio_file.name
|
146 |
-
else:
|
147 |
-
# Direct audio data case
|
148 |
-
sf.write(tmp_file.name, audio_file[1], audio_file[0])
|
149 |
-
audio_path = tmp_file.name
|
150 |
-
|
151 |
-
# Process audio
|
152 |
-
transcription, emotion = transcribe_audio(audio_path)
|
153 |
-
|
154 |
-
# Generate response
|
155 |
-
response = generate_response(transcription, emotion, user_id)
|
156 |
-
|
157 |
-
# Clean up temporary file
|
158 |
-
if audio_path != (audio_file.name if hasattr(audio_file, 'name') else ''):
|
159 |
-
os.unlink(audio_path)
|
160 |
-
|
161 |
-
return transcription, emotion, response, user_id
|
162 |
-
|
163 |
-
except Exception as e:
|
164 |
-
error_msg = f"Processing error: {str(e)}"
|
165 |
-
print(error_msg)
|
166 |
-
return error_msg, "error", "I'm sorry, I couldn't process your audio.", user_id
|
167 |
|
168 |
-
def
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
for i in range(0, len(history), 2):
|
177 |
-
if i + 1 < len(history):
|
178 |
-
user_msg = history[i].replace(f"[User is feeling ", "").split("] ", 1)[-1]
|
179 |
-
bot_msg = history[i + 1]
|
180 |
-
formatted_history.append(f"**You:** {user_msg}")
|
181 |
-
formatted_history.append(f"**AI:** {bot_msg}")
|
182 |
-
|
183 |
-
return "\n\n".join(formatted_history) if formatted_history else "No conversation history yet."
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
#
|
197 |
-
with gr.Blocks(
|
198 |
-
gr.
|
199 |
-
gr.
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
with gr.Column(scale=2):
|
206 |
-
# Audio input
|
207 |
-
audio_input = gr.Audio(
|
208 |
-
sources=["microphone", "upload"],
|
209 |
-
type="filepath",
|
210 |
-
label="🎙️ Record or Upload Audio"
|
211 |
-
)
|
212 |
-
|
213 |
-
# Process button
|
214 |
-
process_btn = gr.Button("🚀 Process Audio", variant="primary", size="lg")
|
215 |
-
|
216 |
-
with gr.Column(scale=3):
|
217 |
-
# Output displays
|
218 |
-
transcription_output = gr.Textbox(
|
219 |
-
label="📝 Transcription",
|
220 |
-
placeholder="Your speech will appear here...",
|
221 |
-
max_lines=3
|
222 |
-
)
|
223 |
-
|
224 |
-
emotion_output = gr.Textbox(
|
225 |
-
label="😊 Detected Emotion",
|
226 |
-
placeholder="Detected emotion will appear here...",
|
227 |
-
max_lines=1
|
228 |
-
)
|
229 |
-
|
230 |
-
response_output = gr.Textbox(
|
231 |
-
label="🤖 AI Response",
|
232 |
-
placeholder="AI response will appear here...",
|
233 |
-
max_lines=5
|
234 |
-
)
|
235 |
-
|
236 |
-
with gr.Row():
|
237 |
-
with gr.Column():
|
238 |
-
# Conversation history
|
239 |
-
history_output = gr.Textbox(
|
240 |
-
label="💬 Conversation History",
|
241 |
-
placeholder="Your conversation history will appear here...",
|
242 |
-
max_lines=10,
|
243 |
-
interactive=False
|
244 |
-
)
|
245 |
-
|
246 |
-
with gr.Column():
|
247 |
-
# Control buttons
|
248 |
-
show_history_btn = gr.Button("📖 Show History", variant="secondary")
|
249 |
-
clear_history_btn = gr.Button("🗑️ Clear History", variant="stop")
|
250 |
-
new_session_btn = gr.Button("🆕 New Session", variant="secondary")
|
251 |
-
|
252 |
-
# Event handlers
|
253 |
-
process_btn.click(
|
254 |
-
fn=process_audio_input,
|
255 |
-
inputs=[audio_input, user_id_state],
|
256 |
-
outputs=[transcription_output, emotion_output, response_output, user_id_state]
|
257 |
-
)
|
258 |
-
|
259 |
-
show_history_btn.click(
|
260 |
-
fn=get_conversation_history,
|
261 |
-
inputs=[user_id_state],
|
262 |
-
outputs=[history_output]
|
263 |
-
)
|
264 |
-
|
265 |
-
clear_history_btn.click(
|
266 |
-
fn=clear_conversation,
|
267 |
-
inputs=[user_id_state],
|
268 |
-
outputs=[history_output]
|
269 |
-
)
|
270 |
-
|
271 |
-
new_session_btn.click(
|
272 |
-
fn=lambda: (str(uuid.uuid4()), "New session started!"),
|
273 |
-
outputs=[user_id_state, history_output]
|
274 |
-
)
|
275 |
|
276 |
-
|
277 |
-
app = gr.mount_gradio_app(app, iface, path="/")
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
import uvicorn
|
|
|
1 |
+
import os, tempfile, uuid
|
2 |
+
from fastapi import FastAPI
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
import soundfile as sf
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
+
import nemo.collections.asr as nemo_asr
|
8 |
+
from speechbrain.pretrained import EncoderClassifier
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
10 |
|
11 |
+
# Initialize FastAPI and models
|
12 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
conversation_history = {}
|
14 |
|
15 |
+
# Model loading
|
16 |
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("nvidia/parakeet-tdt-0.6b-v2") # ASR [2]
|
17 |
+
emotion_model = EncoderClassifier.from_hparams(
|
18 |
+
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
19 |
+
savedir="emotion_cache"
|
20 |
+
) # Emotion [3]
|
21 |
+
llm_name = "microsoft/DialoGPT-medium"
|
22 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
23 |
+
llm_model = AutoModelForCausalLM.from_pretrained(llm_name).to("cuda" if torch.cuda.is_available() else "cpu") # LLM [4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def transcribe_and_emote(audio_path):
|
26 |
+
text = asr_model.transcribe([audio_path])[0].text
|
27 |
+
emotion = emotion_model.classify_file(audio_path)[0]
|
28 |
+
return text, emotion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
def generate_reply(user_text, emotion, uid):
|
31 |
+
# Track and trim history
|
32 |
+
hist = conversation_history.setdefault(uid, [])
|
33 |
+
ctx = f"[Feeling:{emotion}] {user_text}"
|
34 |
+
hist.append(ctx)
|
35 |
+
hist = hist[-6:]
|
36 |
+
conversation_history[uid] = hist
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
prompt = " ".join(hist)
|
39 |
+
inputs = llm_tokenizer.encode(prompt, return_tensors="pt").to(llm_model.device)
|
40 |
+
out = llm_model.generate(inputs, max_new_tokens=100, pad_token_id=llm_tokenizer.eos_token_id)
|
41 |
+
reply = llm_tokenizer.decode(out[0], skip_special_tokens=True)[len(prompt):].strip()
|
42 |
+
hist.append(reply)
|
43 |
+
return reply or "I’m here to help!"
|
44 |
|
45 |
+
def process(audio, uid):
|
46 |
+
if not audio:
|
47 |
+
return "", "", "", uid
|
48 |
+
# Save temp file
|
49 |
+
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
50 |
+
data, sr = audio
|
51 |
+
sf.write(tmp.name, data, sr)
|
52 |
+
# ASR + Emotion
|
53 |
+
text, emo = transcribe_and_emote(tmp.name)
|
54 |
+
# LLM response
|
55 |
+
reply = generate_reply(text, emo, uid)
|
56 |
+
# Clean up
|
57 |
+
os.unlink(tmp.name)
|
58 |
+
return text, emo, reply, uid
|
59 |
|
60 |
+
# Gradio interface
|
61 |
+
with gr.Blocks() as demo:
|
62 |
+
uid_state = gr.State(value=str(uuid.uuid4()))
|
63 |
+
audio_in = gr.Audio(source="microphone", type="numpy")
|
64 |
+
txt_out = gr.Textbox(label="Transcription")
|
65 |
+
emo_out = gr.Textbox(label="Emotion")
|
66 |
+
rep_out = gr.Textbox(label="AI Reply")
|
67 |
+
btn = gr.Button("Process")
|
68 |
+
btn.click(process, inputs=[audio_in, uid_state], outputs=[txt_out, emo_out, rep_out, uid_state])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
import uvicorn
|