Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import pipeline | |
from diffusers import DiffusionPipeline | |
from pyannote.audio import Pipeline as PyannotePipeline | |
from dia.model import Dia | |
from dac.utils import load_model as load_dac_model | |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
# Retrieve HF_TOKEN from Secrets | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
# Automatically shard across 4ร L4 GPUs | |
device_map = "auto" | |
# 1. Load Descript Audio Codec (RVQ) | |
rvq = load_dac_model(tag="latest", model_type="44khz") | |
rvq.eval() | |
if torch.cuda.is_available(): | |
rvq = rvq.to("cuda") | |
# 2. Load Voice Activity Detection via Pyannote | |
vad_pipe = PyannotePipeline.from_pretrained( | |
"pyannote/voice-activity-detection", | |
use_auth_token=HF_TOKEN | |
) | |
# 3. Load Ultravox (speech-to-text + LLM) via Transformers | |
ultravox_pipe = pipeline( | |
model="fixie-ai/ultravox-v0_4", | |
trust_remote_code=True, | |
device_map=device_map, | |
torch_dtype=torch.float16 | |
) | |
# 4. Load Audio Diffusion model via Diffusers | |
diff_pipe = DiffusionPipeline.from_pretrained( | |
"teticio/audio-diffusion-instrumental-hiphop-256" | |
).to("cuda") | |
# 5. Load Dia TTS with meta-weight initialization and multi-GPU dispatch | |
with init_empty_weights(): | |
dia = Dia.from_pretrained("nari-labs/Dia-1.6B") | |
dia = load_checkpoint_and_dispatch( | |
dia, | |
"nari-labs/Dia-1.6B", | |
device_map=device_map, | |
dtype=torch.float16 | |
) | |
# Inference function | |
def process_audio(audio): | |
sr, array = audio | |
array = array.numpy() if torch.is_tensor(array) else array | |
# 2.1 VAD: segment speech regions (not used further here) | |
_ = vad_pipe(array, sampling_rate=sr) | |
# 1.1 RVQ encode/decode for discrete audio tokens | |
x = torch.tensor(array).unsqueeze(0).to("cuda") | |
codes = rvq.encode(x) | |
decoded = rvq.decode(codes).squeeze().cpu().numpy() | |
# 3. Ultravox ASR + LLM to generate response text | |
ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr}) | |
text = ultra_out.get("text", "") | |
# 4. Diffusion-based prosody enhancement | |
pros = diff_pipe(raw_audio=decoded)["audios"][0] | |
# 5. Dia TTS synthesis with neutral emotion tag | |
tts = dia.generate(f"[emotion:neutral] {text}") | |
tts_np = tts.squeeze().cpu().numpy() | |
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 | |
return (sr, tts_np), text | |
# Gradio UI | |
with gr.Blocks(title="Maya AI ๐") as demo: | |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent") | |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice") | |
send_btn = gr.Button("Send") | |
audio_out = gr.Audio(label="AIโs Response") | |
text_out = gr.Textbox(label="Generated Text") | |
send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out]) | |
if __name__ == "__main__": | |
demo.launch() | |