Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import pipeline, AutoTokenizer | |
from diffusers import DiffusionPipeline | |
from pyannote.audio import Pipeline as PyannotePipeline | |
from dia.model import DiaConfig, DiaModel, Dia | |
from dac.utils import load_model as load_dac_model | |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
HF_TOKEN = os.environ["HF_TOKEN"] | |
device_map = "auto" | |
# RVQ Codec | |
rvq = load_dac_model(tag="latest", model_type="44khz") | |
rvq.eval() | |
if torch.cuda.is_available(): rvq = rvq.to("cuda") | |
# VAD Pipeline | |
vad_pipe = PyannotePipeline.from_pretrained( | |
"pyannote/voice-activity-detection", | |
use_auth_token=HF_TOKEN | |
) | |
# Ultravox Pipeline | |
ultravox_pipe = pipeline( | |
model="fixie-ai/ultravox-v0_4", | |
trust_remote_code=True, | |
device_map=device_map, | |
torch_dtype=torch.float16 | |
) | |
# Audio Diffusion | |
diff_pipe = DiffusionPipeline.from_pretrained( | |
"teticio/audio-diffusion-instrumental-hiphop-256", | |
torch_dtype=torch.float16 | |
).to("cuda") | |
# Dia TTS Loading | |
config = DiaConfig.from_pretrained("nari-labs/Dia-1.6B") | |
with init_empty_weights(): | |
base_model = DiaModel(config) | |
base_model = load_checkpoint_and_dispatch( | |
base_model, | |
"nari-labs/Dia-1.6B", | |
device_map=device_map, | |
dtype=torch.float16 | |
) | |
dia = Dia(base_model, config) | |
# Save tokenizer for Dia text processing | |
tokenizer = AutoTokenizer.from_pretrained("nari-labs/Dia-1.6B") | |
def process_audio(audio): | |
sr, array = audio | |
array = array.numpy() if torch.is_tensor(array) else array | |
vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr}) | |
x = torch.tensor(array).unsqueeze(0).to("cuda") | |
codes = rvq.encode(x); decoded = rvq.decode(codes).squeeze().cpu().numpy() | |
ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr}) | |
text = ultra_out.get("text", "") | |
pros = diff_pipe(raw_audio=decoded)["audios"][0] | |
inputs = tokenizer(f"[emotion:neutral] {text}", return_tensors="pt").to("cuda") | |
tts_tensors = dia.generate(**inputs) | |
tts_np = tts_tensors.squeeze().cpu().numpy() | |
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 if tts_np.size else tts_np | |
return (sr, tts_np), text | |
with gr.Blocks(title="Maya AI π") as demo: | |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent") | |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice") | |
send_btn = gr.Button("Send") | |
audio_out = gr.Audio(label="AI Response") | |
text_out = gr.Textbox(label="Generated Text") | |
send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out]) | |
if __name__ == "__main__": | |
demo.launch() | |