Maya-AI / app.py
Devakumar868's picture
Update app.py
3972023 verified
raw
history blame
2.66 kB
import os
import gradio as gr
import torch
import numpy as np
from transformers import pipeline, AutoTokenizer
from diffusers import DiffusionPipeline
from pyannote.audio import Pipeline as PyannotePipeline
from dia.model import DiaConfig, DiaModel, Dia
from dac.utils import load_model as load_dac_model
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
HF_TOKEN = os.environ["HF_TOKEN"]
device_map = "auto"
# RVQ Codec
rvq = load_dac_model(tag="latest", model_type="44khz")
rvq.eval()
if torch.cuda.is_available(): rvq = rvq.to("cuda")
# VAD Pipeline
vad_pipe = PyannotePipeline.from_pretrained(
"pyannote/voice-activity-detection",
use_auth_token=HF_TOKEN
)
# Ultravox Pipeline
ultravox_pipe = pipeline(
model="fixie-ai/ultravox-v0_4",
trust_remote_code=True,
device_map=device_map,
torch_dtype=torch.float16
)
# Audio Diffusion
diff_pipe = DiffusionPipeline.from_pretrained(
"teticio/audio-diffusion-instrumental-hiphop-256",
torch_dtype=torch.float16
).to("cuda")
# Dia TTS Loading
config = DiaConfig.from_pretrained("nari-labs/Dia-1.6B")
with init_empty_weights():
base_model = DiaModel(config)
base_model = load_checkpoint_and_dispatch(
base_model,
"nari-labs/Dia-1.6B",
device_map=device_map,
dtype=torch.float16
)
dia = Dia(base_model, config)
# Save tokenizer for Dia text processing
tokenizer = AutoTokenizer.from_pretrained("nari-labs/Dia-1.6B")
def process_audio(audio):
sr, array = audio
array = array.numpy() if torch.is_tensor(array) else array
vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr})
x = torch.tensor(array).unsqueeze(0).to("cuda")
codes = rvq.encode(x); decoded = rvq.decode(codes).squeeze().cpu().numpy()
ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
text = ultra_out.get("text", "")
pros = diff_pipe(raw_audio=decoded)["audios"][0]
inputs = tokenizer(f"[emotion:neutral] {text}", return_tensors="pt").to("cuda")
tts_tensors = dia.generate(**inputs)
tts_np = tts_tensors.squeeze().cpu().numpy()
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 if tts_np.size else tts_np
return (sr, tts_np), text
with gr.Blocks(title="Maya AI πŸ“ˆ") as demo:
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
send_btn = gr.Button("Send")
audio_out = gr.Audio(label="AI Response")
text_out = gr.Textbox(label="Generated Text")
send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out])
if __name__ == "__main__":
demo.launch()