Spaces:
Runtime error
Runtime error
File size: 10,055 Bytes
c0a635e c5ef34e c0a635e c5ef34e c0a635e c5ef34e c0a635e c5ef34e c0a635e c5ef34e c0a635e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import tempfile
from fastapi import FastAPI, UploadFile, File
import gradio as gr
import nemo.collections.asr as nemo_asr
from speechbrain.pretrained import EncoderClassifier
from transformers import AutoModelForCausalLM, AutoTokenizer
import soundfile as sf
import torch
import numpy as np
from typing import Dict, List, Tuple
import json
import uuid
from datetime import datetime
# Initialize FastAPI app
app = FastAPI()
# Global variables for models
asr_model = None
emotion_model = None
llm_model = None
llm_tokenizer = None
conversation_history = {}
def load_models():
"""Load all required models"""
global asr_model, emotion_model, llm_model, llm_tokenizer
try:
# Load ASR model using correct syntax
print("Loading ASR model...")
asr_model = nemo_asr.models.ASRModel.from_pretrained("nvidia/parakeet-tdt-0.6b-v2")
print("ASR model loaded successfully")
# Load emotion recognition model
print("Loading emotion model...")
emotion_model = EncoderClassifier.from_hparams(
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
savedir="./emotion_model_cache"
)
print("Emotion model loaded successfully")
# Load LLM for conversation
print("Loading LLM...")
model_name = "microsoft/DialoGPT-medium" # Lighter alternative to Vicuna
llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
llm_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Add padding token if not present
if llm_tokenizer.pad_token is None:
llm_tokenizer.pad_token = llm_tokenizer.eos_token
print("All models loaded successfully")
except Exception as e:
print(f"Error loading models: {str(e)}")
raise e
def transcribe_audio(audio_path: str) -> Tuple[str, str]:
"""Transcribe audio and detect emotion"""
try:
# ASR transcription
transcription = asr_model.transcribe([audio_path])
text = transcription[0].text if hasattr(transcription[0], 'text') else str(transcription[0])
# Emotion detection
emotion_result = emotion_model.classify_file(audio_path)
emotion = emotion_result[0] if isinstance(emotion_result, list) else str(emotion_result)
return text, emotion
except Exception as e:
print(f"Error in transcription: {str(e)}")
return f"Error: {str(e)}", "unknown"
def generate_response(user_text: str, emotion: str, user_id: str) -> str:
"""Generate contextual response based on user input and emotion"""
try:
# Get conversation history
if user_id not in conversation_history:
conversation_history[user_id] = []
# Add emotion context to the input
emotional_context = f"[User is feeling {emotion}] {user_text}"
# Encode input with conversation history
conversation_history[user_id].append(emotional_context)
# Keep only last 5 exchanges to manage memory
if len(conversation_history[user_id]) > 10:
conversation_history[user_id] = conversation_history[user_id][-10:]
# Create input for the model
input_text = " ".join(conversation_history[user_id][-3:]) # Last 3 exchanges
# Tokenize and generate
inputs = llm_tokenizer.encode(input_text, return_tensors="pt")
if torch.cuda.is_available():
inputs = inputs.cuda()
with torch.no_grad():
outputs = llm_model.generate(
inputs,
max_new_tokens=100,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=llm_tokenizer.eos_token_id
)
# Decode response
response = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new part of the response
response = response[len(input_text):].strip()
# Add to conversation history
conversation_history[user_id].append(response)
return response if response else "I understand your feelings. How can I help you today?"
except Exception as e:
print(f"Error generating response: {str(e)}")
return "I'm having trouble processing that right now. Could you try again?"
def process_audio_input(audio_file, user_id: str = None) -> Tuple[str, str, str, str]:
"""Main processing function for audio input"""
if user_id is None:
user_id = str(uuid.uuid4())
if audio_file is None:
return "No audio file provided", "", "", user_id
try:
# Save uploaded audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
# Handle different audio input formats
if hasattr(audio_file, 'name'):
# File upload case
audio_path = audio_file.name
else:
# Direct audio data case
sf.write(tmp_file.name, audio_file[1], audio_file[0])
audio_path = tmp_file.name
# Process audio
transcription, emotion = transcribe_audio(audio_path)
# Generate response
response = generate_response(transcription, emotion, user_id)
# Clean up temporary file
if audio_path != (audio_file.name if hasattr(audio_file, 'name') else ''):
os.unlink(audio_path)
return transcription, emotion, response, user_id
except Exception as e:
error_msg = f"Processing error: {str(e)}"
print(error_msg)
return error_msg, "error", "I'm sorry, I couldn't process your audio.", user_id
def get_conversation_history(user_id: str) -> str:
"""Get formatted conversation history for a user"""
if user_id not in conversation_history or not conversation_history[user_id]:
return "No conversation history yet."
history = conversation_history[user_id]
formatted_history = []
for i in range(0, len(history), 2):
if i + 1 < len(history):
user_msg = history[i].replace(f"[User is feeling ", "").split("] ", 1)[-1]
bot_msg = history[i + 1]
formatted_history.append(f"**You:** {user_msg}")
formatted_history.append(f"**AI:** {bot_msg}")
return "\n\n".join(formatted_history) if formatted_history else "No conversation history yet."
def clear_conversation(user_id: str) -> str:
"""Clear conversation history for a user"""
if user_id in conversation_history:
conversation_history[user_id] = []
return "Conversation history cleared."
# Load models on startup
print("Initializing models...")
load_models()
print("Models initialized successfully")
# Create Gradio interface
with gr.Blocks(title="Emotional Conversational AI", theme=gr.themes.Soft()) as iface:
gr.Markdown("# π€ Emotional Conversational AI")
gr.Markdown("Upload audio or use your microphone to have an emotional conversation with AI")
# User ID state
user_id_state = gr.State(value=str(uuid.uuid4()))
with gr.Row():
with gr.Column(scale=2):
# Audio input
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="ποΈ Record or Upload Audio"
)
# Process button
process_btn = gr.Button("π Process Audio", variant="primary", size="lg")
with gr.Column(scale=3):
# Output displays
transcription_output = gr.Textbox(
label="π Transcription",
placeholder="Your speech will appear here...",
max_lines=3
)
emotion_output = gr.Textbox(
label="π Detected Emotion",
placeholder="Detected emotion will appear here...",
max_lines=1
)
response_output = gr.Textbox(
label="π€ AI Response",
placeholder="AI response will appear here...",
max_lines=5
)
with gr.Row():
with gr.Column():
# Conversation history
history_output = gr.Textbox(
label="π¬ Conversation History",
placeholder="Your conversation history will appear here...",
max_lines=10,
interactive=False
)
with gr.Column():
# Control buttons
show_history_btn = gr.Button("π Show History", variant="secondary")
clear_history_btn = gr.Button("ποΈ Clear History", variant="stop")
new_session_btn = gr.Button("π New Session", variant="secondary")
# Event handlers
process_btn.click(
fn=process_audio_input,
inputs=[audio_input, user_id_state],
outputs=[transcription_output, emotion_output, response_output, user_id_state]
)
show_history_btn.click(
fn=get_conversation_history,
inputs=[user_id_state],
outputs=[history_output]
)
clear_history_btn.click(
fn=clear_conversation,
inputs=[user_id_state],
outputs=[history_output]
)
new_session_btn.click(
fn=lambda: (str(uuid.uuid4()), "New session started!"),
outputs=[user_id_state, history_output]
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, iface, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|