Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import arxiv
|
4 |
+
from transformers import pipeline
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
|
7 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
8 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
9 |
+
|
10 |
+
def fetch_arxiv_papers(query, max_results=5):
|
11 |
+
search = arxiv.Search(
|
12 |
+
query=query,
|
13 |
+
max_results=max_results,
|
14 |
+
sort_by=arxiv.SortCriterion.Relevance
|
15 |
+
)
|
16 |
+
return list(search.results())
|
17 |
+
|
18 |
+
def generate_answer(question, context):
|
19 |
+
return qa_pipeline(question=question, context=context)["answer"]
|
20 |
+
|
21 |
+
def evaluate_retrieval(query, context):
|
22 |
+
query_embed = embedder.encode(query, convert_to_tensor=True)
|
23 |
+
context_embed = embedder.encode(context, convert_to_tensor=True)
|
24 |
+
similarity = util.pytorch_cos_sim(query_embed, context_embed)
|
25 |
+
score = float(similarity[0][0])
|
26 |
+
if score > 0.7:
|
27 |
+
return "High"
|
28 |
+
elif score > 0.4:
|
29 |
+
return "Medium"
|
30 |
+
else:
|
31 |
+
return "Low"
|
32 |
+
|
33 |
+
def evaluate_summary(context, answer):
|
34 |
+
if answer.lower() in context.lower():
|
35 |
+
return "Good"
|
36 |
+
elif len(answer.split()) > 5:
|
37 |
+
return "Fair"
|
38 |
+
else:
|
39 |
+
return "Poor"
|
40 |
+
|
41 |
+
def rag_pipeline(user_query):
|
42 |
+
papers = fetch_arxiv_papers(user_query)
|
43 |
+
if not papers:
|
44 |
+
return "No relevant papers found.", "", ""
|
45 |
+
|
46 |
+
output_blocks = []
|
47 |
+
for i, paper in enumerate(papers, 1):
|
48 |
+
title = paper.title
|
49 |
+
abstract = paper.summary
|
50 |
+
link = paper.entry_id
|
51 |
+
answer = generate_answer(user_query, abstract)
|
52 |
+
retrieval_score = evaluate_retrieval(user_query, abstract)
|
53 |
+
summary_score = evaluate_summary(abstract, answer)
|
54 |
+
|
55 |
+
block = f"""
|
56 |
+
### Paper {i}
|
57 |
+
|
58 |
+
Title: {title}
|
59 |
+
|
60 |
+
Abstract: {abstract}
|
61 |
+
|
62 |
+
Summarized Answer: {answer}
|
63 |
+
|
64 |
+
Link: {link}
|
65 |
+
|
66 |
+
Retrieval Accuracy: {retrieval_score}
|
67 |
+
Summary Quality: {summary_score}
|
68 |
+
|
69 |
+
---"""
|
70 |
+
output_blocks.append(block)
|
71 |
+
|
72 |
+
final_output = "\n".join(output_blocks)
|
73 |
+
return final_output, "Multiple Papers Shown", "See Above"
|
74 |
+
|
75 |
+
# Gradio UI
|
76 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="green")) as demo:
|
77 |
+
gr.Markdown("## Scientific Paper Discovery — RAG-Based QA & Evaluation")
|
78 |
+
gr.Markdown("Enter your research topic below to explore papers from arXiv and get summarized insights.")
|
79 |
+
|
80 |
+
query = gr.Textbox(label="Enter a research topic")
|
81 |
+
run_btn = gr.Button("Search and Summarize")
|
82 |
+
|
83 |
+
output = gr.Markdown(label="Output")
|
84 |
+
retrieval_accuracy = gr.Textbox(label="Retrieval Accuracy")
|
85 |
+
summary_quality = gr.Textbox(label="Summary Quality")
|
86 |
+
|
87 |
+
run_btn.click(fn=rag_pipeline, inputs=query, outputs=[output, retrieval_accuracy, summary_quality])
|
88 |
+
|
89 |
+
demo.launch()
|