Spaces:
Configuration error
Configuration error
# What is this? | |
## Unit tests for Azure AI integration | |
import asyncio | |
import os | |
import sys | |
import traceback | |
from dotenv import load_dotenv | |
import litellm.types | |
import litellm.types.utils | |
from litellm.llms.anthropic.chat import ModelResponseIterator | |
import httpx | |
import json | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
# from base_rerank_unit_tests import BaseLLMRerankTest | |
load_dotenv() | |
import io | |
import os | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
from typing import Optional | |
from unittest.mock import MagicMock, patch | |
import pytest | |
import litellm | |
from litellm import completion | |
def test_map_azure_model_group(model_group_header, expected_model): | |
from litellm.llms.azure_ai.embed.cohere_transformation import AzureAICohereConfig | |
config = AzureAICohereConfig() | |
assert config._map_azure_model_group(model_group_header) == expected_model | |
async def test_azure_ai_with_image_url(): | |
""" | |
Important test: | |
Test that Azure AI studio can handle image_url passed when content is a list containing both text and image_url | |
""" | |
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler | |
litellm.set_verbose = True | |
client = AsyncHTTPHandler() | |
with patch.object(client, "post") as mock_client: | |
try: | |
await litellm.acompletion( | |
model="azure_ai/Phi-3-5-vision-instruct-dcvov", | |
api_base="https://Phi-3-5-vision-instruct-dcvov.eastus2.models.ai.azure.com", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "What is in this image?", | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png" | |
}, | |
}, | |
], | |
}, | |
], | |
api_key="fake-api-key", | |
client=client, | |
) | |
except Exception as e: | |
traceback.print_exc() | |
print(f"Error: {e}") | |
# Verify the request was made | |
mock_client.assert_called_once() | |
print(f"mock_client.call_args.kwargs: {mock_client.call_args.kwargs}") | |
# Check the request body | |
request_body = json.loads(mock_client.call_args.kwargs["data"]) | |
assert request_body["model"] == "Phi-3-5-vision-instruct-dcvov" | |
assert request_body["messages"] == [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "What is in this image?"}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": "https://litellm-listing.s3.amazonaws.com/litellm_logo.png" | |
}, | |
}, | |
], | |
} | |
] | |
def test_azure_ai_services_handler(api_base, expected_url): | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
litellm.set_verbose = True | |
client = HTTPHandler() | |
with patch.object(client, "post") as mock_client: | |
try: | |
response = litellm.completion( | |
model="azure_ai/Meta-Llama-3.1-70B-Instruct", | |
messages=[{"role": "user", "content": "Hello, how are you?"}], | |
api_key="my-fake-api-key", | |
api_base=api_base, | |
client=client, | |
) | |
print(response) | |
except Exception as e: | |
print(f"Error: {e}") | |
mock_client.assert_called_once() | |
assert mock_client.call_args.kwargs["headers"]["api-key"] == "my-fake-api-key" | |
assert mock_client.call_args.kwargs["url"] == expected_url | |
def test_azure_ai_services_with_api_version(): | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler | |
client = HTTPHandler() | |
with patch.object(client, "post") as mock_client: | |
try: | |
response = litellm.completion( | |
model="azure_ai/Meta-Llama-3.1-70B-Instruct", | |
messages=[{"role": "user", "content": "Hello, how are you?"}], | |
api_key="my-fake-api-key", | |
api_version="2024-05-01-preview", | |
api_base="https://litellm8397336933.services.ai.azure.com/models", | |
client=client, | |
) | |
except Exception as e: | |
print(f"Error: {e}") | |
mock_client.assert_called_once() | |
assert mock_client.call_args.kwargs["headers"]["api-key"] == "my-fake-api-key" | |
assert ( | |
mock_client.call_args.kwargs["url"] | |
== "https://litellm8397336933.services.ai.azure.com/models/chat/completions?api-version=2024-05-01-preview" | |
) | |
def test_completion_azure_ai_command_r(): | |
try: | |
import os | |
litellm.set_verbose = True | |
os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_COHERE_API_BASE", "") | |
os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_COHERE_API_KEY", "") | |
response = completion( | |
model="azure_ai/command-r-plus", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "What is the meaning of life?"} | |
], | |
} | |
], | |
) # type: ignore | |
assert "azure_ai" in response.model | |
except litellm.Timeout as e: | |
pass | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
def test_azure_deepseek_reasoning_content(): | |
import json | |
client = HTTPHandler() | |
with patch.object(client, "post") as mock_post: | |
mock_response = MagicMock() | |
mock_response.text = json.dumps( | |
{ | |
"choices": [ | |
{ | |
"finish_reason": "stop", | |
"index": 0, | |
"message": { | |
"content": "<think>I am thinking here</think>\n\nThe sky is a canvas of blue", | |
"role": "assistant", | |
}, | |
} | |
], | |
} | |
) | |
mock_response.status_code = 200 | |
# Add required response attributes | |
mock_response.headers = {"Content-Type": "application/json"} | |
mock_response.json = lambda: json.loads(mock_response.text) | |
mock_post.return_value = mock_response | |
response = litellm.completion( | |
model="azure_ai/deepseek-r1", | |
messages=[{"role": "user", "content": "Hello, world!"}], | |
api_base="https://litellm8397336933.services.ai.azure.com/models/chat/completions", | |
api_key="my-fake-api-key", | |
client=client, | |
) | |
print(response) | |
assert response.choices[0].message.reasoning_content == "I am thinking here" | |
assert response.choices[0].message.content == "\n\nThe sky is a canvas of blue" | |
# skipping due to cohere rbac issues | |
# class TestAzureAIRerank(BaseLLMRerankTest): | |
# def get_custom_llm_provider(self) -> litellm.LlmProviders: | |
# return litellm.LlmProviders.AZURE_AI | |
# def get_base_rerank_call_args(self) -> dict: | |
# return { | |
# "model": "azure_ai/cohere-rerank-v3-english", | |
# "api_base": os.getenv("AZURE_AI_COHERE_API_BASE"), | |
# "api_key": os.getenv("AZURE_AI_COHERE_API_KEY"), | |
# } | |
async def test_azure_ai_request_format(): | |
""" | |
Test that Azure AI requests are formatted correctly with the proper endpoint and parameters | |
for both synchronous and asynchronous calls | |
""" | |
from openai import AsyncAzureOpenAI, AzureOpenAI | |
litellm._turn_on_debug() | |
# Set up the test parameters | |
api_key = os.getenv("AZURE_API_KEY") | |
api_base = f"{os.getenv('AZURE_API_BASE')}/openai/deployments/gpt-4o-new-test/chat/completions?api-version=2024-08-01-preview" | |
model = "azure_ai/gpt-4o" | |
messages = [ | |
{"role": "user", "content": "hi"}, | |
{"role": "assistant", "content": "Hello! How can I assist you today?"}, | |
{"role": "user", "content": "hi"}, | |
] | |
await litellm.acompletion( | |
custom_llm_provider="azure_ai", | |
api_key=api_key, | |
api_base=api_base, | |
model=model, | |
messages=messages, | |
) | |