test3 / litellm /llms /openai /image_edit /transformation.py
DesertWolf's picture
Upload folder using huggingface_hub
447ebeb verified
from io import BufferedReader
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, cast
import httpx
from httpx._types import RequestFiles
import litellm
from litellm.images.utils import ImageEditRequestUtils
from litellm.llms.base_llm.image_edit.transformation import BaseImageEditConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.images.main import (
ImageEditOptionalRequestParams,
ImageEditRequestParams,
)
from litellm.types.llms.openai import FileTypes
from litellm.types.router import GenericLiteLLMParams
from litellm.utils import ImageResponse
from ..common_utils import OpenAIError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class OpenAIImageEditConfig(BaseImageEditConfig):
def get_supported_openai_params(self, model: str) -> list:
"""
All OpenAI Image Edits params are supported
"""
return [
"image",
"prompt",
"background",
"mask",
"model",
"n",
"quality",
"response_format",
"size",
"user",
"extra_headers",
"extra_query",
"extra_body",
"timeout",
]
def map_openai_params(
self,
image_edit_optional_params: ImageEditOptionalRequestParams,
model: str,
drop_params: bool,
) -> Dict:
"""No mapping applied since inputs are in OpenAI spec already"""
return dict(image_edit_optional_params)
def transform_image_edit_request(
self,
model: str,
prompt: str,
image: FileTypes,
image_edit_optional_request_params: Dict,
litellm_params: GenericLiteLLMParams,
headers: dict,
) -> Tuple[Dict, RequestFiles]:
"""
No transform applied since inputs are in OpenAI spec already
This handles buffered readers as images to be sent as multipart/form-data for OpenAI
"""
request = ImageEditRequestParams(
model=model,
image=image,
prompt=prompt,
**image_edit_optional_request_params,
)
request_dict = cast(Dict, request)
#########################################################
# Separate images as `files` and send other parameters as `data`
#########################################################
_images = request_dict.get("image") or []
data_without_images = {k: v for k, v in request_dict.items() if k != "image"}
files_list: List[Tuple[str, Any]] = []
for _image in _images:
image_content_type: str = ImageEditRequestUtils.get_image_content_type(
_image
)
if isinstance(_image, BufferedReader):
files_list.append(
("image[]", (_image.name, _image, image_content_type))
)
else:
files_list.append(
("image[]", ("image.png", _image, image_content_type))
)
return data_without_images, files_list
def transform_image_edit_response(
self,
model: str,
raw_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
) -> ImageResponse:
"""No transform applied since outputs are in OpenAI spec already"""
try:
raw_response_json = raw_response.json()
except Exception:
raise OpenAIError(
message=raw_response.text, status_code=raw_response.status_code
)
return ImageResponse(**raw_response_json)
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
) -> dict:
api_key = (
api_key
or litellm.api_key
or litellm.openai_key
or get_secret_str("OPENAI_API_KEY")
)
headers.update(
{
"Authorization": f"Bearer {api_key}",
}
)
return headers
def get_complete_url(
self,
model: str,
api_base: Optional[str],
litellm_params: dict,
) -> str:
"""
Get the endpoint for OpenAI responses API
"""
api_base = (
api_base
or litellm.api_base
or get_secret_str("OPENAI_BASE_URL")
or get_secret_str("OPENAI_API_BASE")
or "https://api.openai.com/v1"
)
# Remove trailing slashes
api_base = api_base.rstrip("/")
return f"{api_base}/images/edits"