Spaces:
Configuration error
Configuration error
File size: 9,615 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import sys, os
import traceback
import json
import uuid
from dotenv import load_dotenv
from fastapi import Request
from datetime import datetime
load_dotenv()
import os, io, time
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, logging, asyncio
import litellm
from litellm.proxy.management_endpoints.model_management_endpoints import (
add_new_model,
update_model,
)
from litellm.proxy._types import LitellmUserRoles
from litellm._logging import verbose_proxy_logger
from litellm.proxy.utils import PrismaClient, ProxyLogging
from litellm.proxy.management_endpoints.team_endpoints import new_team
verbose_proxy_logger.setLevel(level=logging.DEBUG)
from litellm.caching.caching import DualCache
from litellm.router import (
Deployment,
LiteLLM_Params,
)
from litellm.types.router import ModelInfo, updateDeployment, updateLiteLLMParams
from litellm.proxy._types import UserAPIKeyAuth, NewTeamRequest, LiteLLM_TeamTable
proxy_logging_obj = ProxyLogging(user_api_key_cache=DualCache())
@pytest.fixture
def prisma_client():
from litellm.proxy.proxy_cli import append_query_params
### add connection pool + pool timeout args
params = {"connection_limit": 100, "pool_timeout": 60}
database_url = os.getenv("DATABASE_URL")
modified_url = append_query_params(database_url, params)
os.environ["DATABASE_URL"] = modified_url
os.environ["STORE_MODEL_IN_DB"] = "true"
# Assuming PrismaClient is a class that needs to be instantiated
prisma_client = PrismaClient(
database_url=os.environ["DATABASE_URL"], proxy_logging_obj=proxy_logging_obj
)
# Reset litellm.proxy.proxy_server.prisma_client to None
litellm.proxy.proxy_server.litellm_proxy_budget_name = (
f"litellm-proxy-budget-{time.time()}"
)
litellm.proxy.proxy_server.user_custom_key_generate = None
return prisma_client
@pytest.mark.asyncio
@pytest.mark.skip(reason="new feature, tests passing locally")
async def test_add_new_model(prisma_client):
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.proxy_server import user_api_key_cache
import uuid
_new_model_id = f"local-test-{uuid.uuid4().hex}"
await add_new_model(
model_params=Deployment(
model_name="test_model",
litellm_params=LiteLLM_Params(
model="azure/gpt-3.5-turbo",
api_key="test_api_key",
api_base="test_api_base",
rpm=1000,
tpm=1000,
),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
print("_new_models: ", _new_models)
_new_model_in_db = None
for model in _new_models:
print("current model: ", model)
if model.model_info["id"] == _new_model_id:
print("FOUND MODEL: ", model)
_new_model_in_db = model
assert _new_model_in_db is not None
@pytest.mark.asyncio
@pytest.mark.skip(reason="new feature, tests passing locally")
async def test_add_update_model(prisma_client):
# test that existing litellm_params are not updated
# only new / updated params get updated
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.proxy_server import user_api_key_cache
import uuid
_new_model_id = f"local-test-{uuid.uuid4().hex}"
await add_new_model(
model_params=Deployment(
model_name="test_model",
litellm_params=LiteLLM_Params(
model="azure/gpt-3.5-turbo",
api_key="test_api_key",
api_base="test_api_base",
rpm=1000,
tpm=1000,
),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
print("_new_models: ", _new_models)
_new_model_in_db = None
for model in _new_models:
print("current model: ", model)
if model.model_info["id"] == _new_model_id:
print("FOUND MODEL: ", model)
_new_model_in_db = model
assert _new_model_in_db is not None
_original_model = _new_model_in_db
_original_litellm_params = _new_model_in_db.litellm_params
print("_original_litellm_params: ", _original_litellm_params)
print("now updating the tpm for model")
# run update to update "tpm"
await update_model(
model_params=updateDeployment(
litellm_params=updateLiteLLMParams(tpm=123456),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
_new_model_in_db = None
for model in _new_models:
if model.model_info["id"] == _new_model_id:
print("\nFOUND MODEL: ", model)
_new_model_in_db = model
# assert all other litellm params are identical to _original_litellm_params
for key, value in _original_litellm_params.items():
if key == "tpm":
# assert that tpm actually got updated
assert _new_model_in_db.litellm_params[key] == 123456
else:
assert _new_model_in_db.litellm_params[key] == value
assert _original_model.model_id == _new_model_in_db.model_id
assert _original_model.model_name == _new_model_in_db.model_name
assert _original_model.model_info == _new_model_in_db.model_info
async def _create_new_team(prisma_client):
new_team_request = NewTeamRequest(
team_alias=f"team_{uuid.uuid4().hex}",
)
_new_team = await new_team(
data=new_team_request,
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
http_request=Request(
scope={"type": "http", "method": "POST", "path": "/new_team"}
),
)
return LiteLLM_TeamTable(**_new_team)
@pytest.mark.asyncio
async def test_add_team_model_to_db(prisma_client):
"""
Test adding a team model and verifying the team_public_model_name is stored correctly
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.management_endpoints.model_management_endpoints import (
_add_team_model_to_db,
)
import uuid
new_team = await _create_new_team(prisma_client)
team_id = new_team.team_id
public_model_name = "my-gpt4-model"
model_id = f"local-test-{uuid.uuid4().hex}"
# Create test model deployment
model_params = Deployment(
model_name=public_model_name,
litellm_params=LiteLLM_Params(
model="gpt-4",
api_key="test_api_key",
),
model_info=ModelInfo(
id=model_id,
team_id=team_id,
),
)
# Add model to db
model_response = await _add_team_model_to_db(
model_params=model_params,
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
team_id=team_id,
),
prisma_client=prisma_client,
)
# Verify model was created with correct attributes
assert model_response is not None
assert model_response.model_name.startswith(f"model_name_{team_id}")
# Verify team_public_model_name was stored in model_info
model_info = model_response.model_info
assert model_info["team_public_model_name"] == public_model_name
await asyncio.sleep(1)
# Verify team model alias was created
team = await prisma_client.db.litellm_teamtable.find_first(
where={
"team_id": team_id,
},
include={"litellm_model_table": True},
)
print("team=", team.model_dump_json())
assert team is not None
team_model = team.model_id
print("team model id=", team_model)
litellm_model_table = team.litellm_model_table
print("litellm_model_table=", litellm_model_table.model_dump_json())
model_aliases = litellm_model_table.model_aliases
print("model_aliases=", model_aliases)
assert public_model_name in model_aliases
assert model_aliases[public_model_name] == model_response.model_name
|