import gradio as gr import pickle import random import numpy as np with open('models.pickle', 'rb') as f: models = pickle.load(f) LORA_TOKEN = '' # '<|>LORA_TOKEN<|>' NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>' def sample_next(ctx: str, model, k): ctx = ', '.join(ctx.split(', ')[-k:]) if model.get(ctx) is None: # Fallback: choose a random token from the model's vocabulary random_key = random.choice(list(model.keys())) return random_key.split(', ')[-1] possible_chars = list(model[ctx].keys()) possible_values = list(model[ctx].values()) return np.random.choice(possible_chars, p=possible_values) def generateText(model, minLen=100, size=5, user_idea=None): keys = list(model.keys()) k = len(random.choice(keys).split(', ')) # If user provides an idea, use it as the starting point; otherwise, choose randomly if user_idea and user_idea.strip(): starting_sent = user_idea.strip() # Ensure the starting sentence is compatible with the model's context format starting_sent = starting_sent.replace(', ', NOT_SPLIT_TOKEN) else: starting_sent = random.choice(keys) sentence = starting_sent ctx = ', '.join(starting_sent.split(', ')[-k:]) if ', ' in starting_sent else starting_sent while True: next_prediction = sample_next(ctx, model, k) sentence += f", {next_prediction}" ctx = ', '.join(sentence.split(', ')[-k:]) if '\n' in sentence: break sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ') prompt = sentence.split('\n')[0] # Ensure the prompt meets the minimum length requirement if len(prompt) < minLen: return generateText(model, minLen, size=1, user_idea=user_idea) size = size - 1 if size == 0: return [prompt] output = [prompt] for _ in range(size): # Generate additional prompts without user_idea to maintain diversity new_prompt = generateText(model, minLen, size=1)[0] output.append(new_prompt) return output def sentence_builder(quantity, minLen, Type, negative, user_idea): if Type == "NSFW": idx = 1 elif Type == "SFW": idx = 2 else: idx = 0 model = models[idx] output = "" for i in range(quantity): # Pass user_idea only for the first prompt if provided prompt = generateText(model[0], minLen=minLen, size=1, user_idea=user_idea if i == 0 else None)[0] output += f"PROMPT: {prompt}\n\n" if negative: negative_prompt = generateText(model[1], minLen=minLen, size=5)[0] output += f"NEGATIVE PROMPT: {negative_prompt}\n" output += "----------------------------------------------------------------\n\n\n" return output[:-3] ui = gr.Interface( sentence_builder, [ gr.Slider(1, 10, value=4, label="Count", info="Choose between 1 and 10", step=1), gr.Slider(100, 1000, value=300, label="minLen", info="Choose between 100 and 1000", step=50), gr.Radio(["NSFW", "SFW", "BOTH"], label="TYPE", info="NSFW stands for NOT SAFE FOR WORK, so choose any one you want?"), gr.Checkbox(label="Negative Prompt", info="Do you want to generate negative prompt as well as prompt?") ], "text" ) if __name__ == "__main__": ui.launch()