|
transforms2 = A.Compose( |
|
[ |
|
A.Resize(width=256, height=256), |
|
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255), |
|
ToTensorV2(), |
|
], |
|
is_check_shapes=False |
|
) |
|
def style_transfer(img_file): |
|
img = np.array(Image.open(img_file)) |
|
transform_img = transforms2(image=img) |
|
input_img = transform_img["image"] |
|
input_img = input_img.to(DEVICE) |
|
output_img = genA(input_img) |
|
return postprocess_and_show(output_img) |
|
|
|
|
|
|
|
image_input = gr.Image(type="filepath") |
|
image_output = gr.Image() |
|
|
|
demo = gr.Interface(fn=style_transfer, inputs=image_input, outputs=image_output, title="Style Transfer with CycleGAN") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |