Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +110 -401
- image_processor.py +336 -0
app.py
CHANGED
|
@@ -1,309 +1,111 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
import cv2
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import gradio as gr
|
| 7 |
-
import io
|
| 8 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
-
import spaces
|
| 10 |
from typing import Dict, List, Any, Optional, Tuple
|
| 11 |
-
|
| 12 |
|
| 13 |
from detection_model import DetectionModel
|
| 14 |
from color_mapper import ColorMapper
|
| 15 |
-
from visualization_helper import VisualizationHelper
|
| 16 |
from evaluation_metrics import EvaluationMetrics
|
| 17 |
from style import Style
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
model_instances = {}
|
| 22 |
-
|
| 23 |
-
@spaces.GPU
|
| 24 |
-
def process_image(image, model_instance, confidence_threshold, filter_classes=None):
|
| 25 |
-
"""
|
| 26 |
-
Process an image for object detection
|
| 27 |
-
|
| 28 |
-
Args:
|
| 29 |
-
image: Input image (numpy array or PIL Image)
|
| 30 |
-
model_instance: DetectionModel instance to use
|
| 31 |
-
confidence_threshold: Confidence threshold for detection
|
| 32 |
-
filter_classes: Optional list of classes to filter results
|
| 33 |
-
|
| 34 |
-
Returns:
|
| 35 |
-
Tuple of (result_image, result_text, stats_data)
|
| 36 |
-
"""
|
| 37 |
-
# initialize key variables
|
| 38 |
-
result = None
|
| 39 |
-
stats = {}
|
| 40 |
-
temp_path = None
|
| 41 |
-
|
| 42 |
-
try:
|
| 43 |
-
# update confidence threshold
|
| 44 |
-
model_instance.confidence = confidence_threshold
|
| 45 |
-
|
| 46 |
-
# processing input image
|
| 47 |
-
if isinstance(image, np.ndarray):
|
| 48 |
-
# Convert BGR to RGB if needed
|
| 49 |
-
if image.shape[2] == 3:
|
| 50 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 51 |
-
else:
|
| 52 |
-
image_rgb = image
|
| 53 |
-
pil_image = Image.fromarray(image_rgb)
|
| 54 |
-
elif image is None:
|
| 55 |
-
return None, "No image provided. Please upload an image.", {}
|
| 56 |
-
else:
|
| 57 |
-
pil_image = image
|
| 58 |
-
|
| 59 |
-
# store temp files
|
| 60 |
-
import uuid
|
| 61 |
-
import tempfile
|
| 62 |
-
|
| 63 |
-
temp_dir = tempfile.gettempdir() # use system temp directory
|
| 64 |
-
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
|
| 65 |
-
temp_path = os.path.join(temp_dir, temp_filename)
|
| 66 |
-
pil_image.save(temp_path)
|
| 67 |
-
|
| 68 |
-
# object detection
|
| 69 |
-
result = model_instance.detect(temp_path)
|
| 70 |
-
|
| 71 |
-
if result is None:
|
| 72 |
-
return None, "Detection failed. Please try again with a different image.", {}
|
| 73 |
-
|
| 74 |
-
# calculate stats
|
| 75 |
-
stats = EvaluationMetrics.calculate_basic_stats(result)
|
| 76 |
-
|
| 77 |
-
# add space calculation
|
| 78 |
-
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
|
| 79 |
-
stats["spatial_metrics"] = spatial_metrics
|
| 80 |
-
|
| 81 |
-
if filter_classes and len(filter_classes) > 0:
|
| 82 |
-
# get classes, boxes, confidence
|
| 83 |
-
classes = result.boxes.cls.cpu().numpy().astype(int)
|
| 84 |
-
confs = result.boxes.conf.cpu().numpy()
|
| 85 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
| 86 |
-
|
| 87 |
-
mask = np.zeros_like(classes, dtype=bool)
|
| 88 |
-
for cls_id in filter_classes:
|
| 89 |
-
mask = np.logical_or(mask, classes == cls_id)
|
| 90 |
-
|
| 91 |
-
filtered_stats = {
|
| 92 |
-
"total_objects": int(np.sum(mask)),
|
| 93 |
-
"class_statistics": {},
|
| 94 |
-
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
|
| 95 |
-
"spatial_metrics": stats["spatial_metrics"]
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
# update stats
|
| 99 |
-
names = result.names
|
| 100 |
-
for cls, conf in zip(classes[mask], confs[mask]):
|
| 101 |
-
cls_name = names[int(cls)]
|
| 102 |
-
if cls_name not in filtered_stats["class_statistics"]:
|
| 103 |
-
filtered_stats["class_statistics"][cls_name] = {
|
| 104 |
-
"count": 0,
|
| 105 |
-
"average_confidence": 0
|
| 106 |
-
}
|
| 107 |
-
|
| 108 |
-
filtered_stats["class_statistics"][cls_name]["count"] += 1
|
| 109 |
-
filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
|
| 110 |
-
|
| 111 |
-
stats = filtered_stats
|
| 112 |
-
|
| 113 |
-
viz_data = EvaluationMetrics.generate_visualization_data(
|
| 114 |
-
result,
|
| 115 |
-
color_mapper.get_all_colors()
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
result_image = VisualizationHelper.visualize_detection(
|
| 119 |
-
temp_path, result, color_mapper=color_mapper, figsize=(12, 12), return_pil=True
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
result_text = EvaluationMetrics.format_detection_summary(viz_data)
|
| 123 |
-
|
| 124 |
-
return result_image, result_text, stats
|
| 125 |
-
|
| 126 |
-
except Exception as e:
|
| 127 |
-
error_message = f"Error Occurs: {str(e)}"
|
| 128 |
-
import traceback
|
| 129 |
-
traceback.print_exc()
|
| 130 |
-
print(error_message)
|
| 131 |
-
return None, error_message, {}
|
| 132 |
-
|
| 133 |
-
finally:
|
| 134 |
-
if temp_path and os.path.exists(temp_path):
|
| 135 |
-
try:
|
| 136 |
-
os.remove(temp_path)
|
| 137 |
-
except Exception as e:
|
| 138 |
-
print(f"Cannot delete temp files {temp_path}: {str(e)}")
|
| 139 |
-
|
| 140 |
-
def format_result_text(stats):
|
| 141 |
-
"""
|
| 142 |
-
Format detection statistics into readable text with improved spacing
|
| 143 |
-
|
| 144 |
-
Args:
|
| 145 |
-
stats: Dictionary containing detection statistics
|
| 146 |
-
|
| 147 |
-
Returns:
|
| 148 |
-
Formatted text summary
|
| 149 |
-
"""
|
| 150 |
-
if not stats or "total_objects" not in stats:
|
| 151 |
-
return "No objects detected."
|
| 152 |
-
|
| 153 |
-
# 減少不必要的空行
|
| 154 |
-
lines = [
|
| 155 |
-
f"Detected {stats['total_objects']} objects.",
|
| 156 |
-
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
|
| 157 |
-
"Objects by class:"
|
| 158 |
-
]
|
| 159 |
-
|
| 160 |
-
if "class_statistics" in stats and stats["class_statistics"]:
|
| 161 |
-
# 按計數排序類別
|
| 162 |
-
sorted_classes = sorted(
|
| 163 |
-
stats["class_statistics"].items(),
|
| 164 |
-
key=lambda x: x[1]["count"],
|
| 165 |
-
reverse=True
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
for cls_name, cls_stats in sorted_classes:
|
| 169 |
-
count = cls_stats["count"]
|
| 170 |
-
conf = cls_stats.get("average_confidence", 0)
|
| 171 |
-
|
| 172 |
-
item_text = "item" if count == 1 else "items"
|
| 173 |
-
lines.append(f"• {cls_name}: {count} {item_text} (avg conf: {conf:.2f})")
|
| 174 |
-
else:
|
| 175 |
-
lines.append("No class information available.")
|
| 176 |
-
|
| 177 |
-
# 添加空間信息
|
| 178 |
-
if "spatial_metrics" in stats and "spatial_distribution" in stats["spatial_metrics"]:
|
| 179 |
-
lines.append("Object Distribution:")
|
| 180 |
-
|
| 181 |
-
dist = stats["spatial_metrics"]["spatial_distribution"]
|
| 182 |
-
x_mean = dist.get("x_mean", 0)
|
| 183 |
-
y_mean = dist.get("y_mean", 0)
|
| 184 |
-
|
| 185 |
-
# 描述物體的大致位置
|
| 186 |
-
if x_mean < 0.33:
|
| 187 |
-
h_pos = "on the left side"
|
| 188 |
-
elif x_mean < 0.67:
|
| 189 |
-
h_pos = "in the center"
|
| 190 |
-
else:
|
| 191 |
-
h_pos = "on the right side"
|
| 192 |
-
|
| 193 |
-
if y_mean < 0.33:
|
| 194 |
-
v_pos = "in the upper part"
|
| 195 |
-
elif y_mean < 0.67:
|
| 196 |
-
v_pos = "in the middle"
|
| 197 |
-
else:
|
| 198 |
-
v_pos = "in the lower part"
|
| 199 |
-
|
| 200 |
-
lines.append(f"• Most objects appear {h_pos} {v_pos} of the image")
|
| 201 |
-
|
| 202 |
-
return "\n".join(lines)
|
| 203 |
-
|
| 204 |
-
def format_json_for_display(stats):
|
| 205 |
-
"""
|
| 206 |
-
Format statistics JSON for better display
|
| 207 |
-
|
| 208 |
-
Args:
|
| 209 |
-
stats: Raw statistics dictionary
|
| 210 |
-
|
| 211 |
-
Returns:
|
| 212 |
-
Formatted statistics structure for display
|
| 213 |
-
"""
|
| 214 |
-
# Create a cleaner copy of the stats for display
|
| 215 |
-
display_stats = {}
|
| 216 |
-
|
| 217 |
-
# Add summary section
|
| 218 |
-
display_stats["summary"] = {
|
| 219 |
-
"total_objects": stats.get("total_objects", 0),
|
| 220 |
-
"average_confidence": round(stats.get("average_confidence", 0), 3)
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
-
# Add class statistics in a more organized way
|
| 224 |
-
if "class_statistics" in stats and stats["class_statistics"]:
|
| 225 |
-
# Sort classes by count (descending)
|
| 226 |
-
sorted_classes = sorted(
|
| 227 |
-
stats["class_statistics"].items(),
|
| 228 |
-
key=lambda x: x[1].get("count", 0),
|
| 229 |
-
reverse=True
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
class_stats = {}
|
| 233 |
-
for cls_name, cls_data in sorted_classes:
|
| 234 |
-
class_stats[cls_name] = {
|
| 235 |
-
"count": cls_data.get("count", 0),
|
| 236 |
-
"average_confidence": round(cls_data.get("average_confidence", 0), 3)
|
| 237 |
-
}
|
| 238 |
-
|
| 239 |
-
display_stats["detected_objects"] = class_stats
|
| 240 |
-
|
| 241 |
-
# Simplify spatial metrics
|
| 242 |
-
if "spatial_metrics" in stats:
|
| 243 |
-
spatial = stats["spatial_metrics"]
|
| 244 |
-
|
| 245 |
-
# Simplify spatial distribution
|
| 246 |
-
if "spatial_distribution" in spatial:
|
| 247 |
-
dist = spatial["spatial_distribution"]
|
| 248 |
-
display_stats["spatial"] = {
|
| 249 |
-
"distribution": {
|
| 250 |
-
"x_mean": round(dist.get("x_mean", 0), 3),
|
| 251 |
-
"y_mean": round(dist.get("y_mean", 0), 3),
|
| 252 |
-
"x_std": round(dist.get("x_std", 0), 3),
|
| 253 |
-
"y_std": round(dist.get("y_std", 0), 3)
|
| 254 |
-
}
|
| 255 |
-
}
|
| 256 |
-
|
| 257 |
-
# Add simplified size information
|
| 258 |
-
if "size_distribution" in spatial:
|
| 259 |
-
size = spatial["size_distribution"]
|
| 260 |
-
display_stats["spatial"]["size"] = {
|
| 261 |
-
"mean_area": round(size.get("mean_area", 0), 3),
|
| 262 |
-
"min_area": round(size.get("min_area", 0), 3),
|
| 263 |
-
"max_area": round(size.get("max_area", 0), 3)
|
| 264 |
-
}
|
| 265 |
-
|
| 266 |
-
return display_stats
|
| 267 |
|
| 268 |
def get_all_classes():
|
| 269 |
"""
|
| 270 |
Get all available COCO classes from the currently active model or fallback to standard COCO classes
|
| 271 |
-
|
| 272 |
Returns:
|
| 273 |
List of tuples (class_id, class_name)
|
| 274 |
"""
|
| 275 |
-
global model_instances
|
| 276 |
-
|
| 277 |
# Try to get class names from any loaded model
|
| 278 |
-
for model_name, model_instance in model_instances.items():
|
| 279 |
if model_instance and model_instance.is_model_loaded:
|
| 280 |
try:
|
| 281 |
class_names = model_instance.class_names
|
| 282 |
return [(idx, name) for idx, name in class_names.items()]
|
| 283 |
except Exception:
|
| 284 |
pass
|
| 285 |
-
|
| 286 |
# Fallback to standard COCO classes
|
| 287 |
return [
|
| 288 |
(0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
|
| 289 |
(5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
|
| 290 |
-
(10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'),
|
| 291 |
(14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
|
| 292 |
(20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
|
| 293 |
(25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
|
| 294 |
(30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
|
| 295 |
-
(35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'),
|
| 296 |
(39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
|
| 297 |
-
(44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'),
|
| 298 |
(49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
|
| 299 |
-
(54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'),
|
| 300 |
(59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
|
| 301 |
-
(64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'),
|
| 302 |
(69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
|
| 303 |
-
(74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'),
|
| 304 |
(79, 'toothbrush')
|
| 305 |
]
|
| 306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
def create_interface():
|
| 308 |
"""創建 Gradio 界面,包含美化的視覺效果"""
|
| 309 |
css = Style.get_css()
|
|
@@ -312,11 +114,11 @@ def create_interface():
|
|
| 312 |
available_models = DetectionModel.get_available_models()
|
| 313 |
model_choices = [model["model_file"] for model in available_models]
|
| 314 |
model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
|
| 315 |
-
|
| 316 |
# 可用類別過濾選項
|
| 317 |
available_classes = get_all_classes()
|
| 318 |
class_choices = [f"{id}: {name}" for id, name in available_classes]
|
| 319 |
-
|
| 320 |
# 創建 Gradio Blocks 界面
|
| 321 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
|
| 322 |
# 頁面頂部標題
|
|
@@ -330,36 +132,36 @@ def create_interface():
|
|
| 330 |
""")
|
| 331 |
|
| 332 |
current_model = gr.State("yolov8m.pt") # use medium size model as defualt
|
| 333 |
-
|
| 334 |
-
# 主要內容區
|
| 335 |
with gr.Row(equal_height=True):
|
| 336 |
# 左側 - 輸入控制區(可上傳圖片)
|
| 337 |
with gr.Column(scale=4, elem_classes="input-panel"):
|
| 338 |
with gr.Group():
|
| 339 |
gr.HTML('<div class="section-heading">Upload Image</div>')
|
| 340 |
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
|
| 341 |
-
|
| 342 |
with gr.Accordion("Advanced Settings", open=False):
|
| 343 |
with gr.Row():
|
| 344 |
model_dropdown = gr.Dropdown(
|
| 345 |
choices=model_choices,
|
| 346 |
-
value="yolov8m.pt",
|
| 347 |
label="Select Model",
|
| 348 |
info="Choose different models based on your needs for speed vs. accuracy"
|
| 349 |
)
|
| 350 |
-
|
| 351 |
# display model info
|
| 352 |
model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
|
| 353 |
|
| 354 |
confidence = gr.Slider(
|
| 355 |
-
minimum=0.1,
|
| 356 |
-
maximum=0.9,
|
| 357 |
-
value=0.25,
|
| 358 |
-
step=0.05,
|
| 359 |
label="Confidence Threshold",
|
| 360 |
info="Higher values show fewer but more confident detections"
|
| 361 |
)
|
| 362 |
-
|
| 363 |
with gr.Accordion("Filter Classes", open=False):
|
| 364 |
# 常見物件類別快速選擇按鈕
|
| 365 |
gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
|
|
@@ -368,7 +170,7 @@ def create_interface():
|
|
| 368 |
vehicles_btn = gr.Button("Vehicles", size="sm")
|
| 369 |
animals_btn = gr.Button("Animals", size="sm")
|
| 370 |
objects_btn = gr.Button("Common Objects", size="sm")
|
| 371 |
-
|
| 372 |
# 類別選擇下拉框
|
| 373 |
class_filter = gr.Dropdown(
|
| 374 |
choices=class_choices,
|
|
@@ -376,10 +178,10 @@ def create_interface():
|
|
| 376 |
label="Select Classes to Display",
|
| 377 |
info="Leave empty to show all detected objects"
|
| 378 |
)
|
| 379 |
-
|
| 380 |
# detect buttom
|
| 381 |
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
|
| 382 |
-
|
| 383 |
# 使用說明區
|
| 384 |
with gr.Group(elem_classes="how-to-use"):
|
| 385 |
gr.HTML('<div class="section-heading">How to Use</div>')
|
|
@@ -388,19 +190,19 @@ def create_interface():
|
|
| 388 |
2. (Optional) Adjust settings like confidence threshold or model size (n, m, x)
|
| 389 |
3. Optionally filter to specific object classes
|
| 390 |
4. Click "Detect Objects" button
|
| 391 |
-
|
| 392 |
The model will identify objects in your image and display them with bounding boxes.
|
| 393 |
-
|
| 394 |
**Note:** Detection quality depends on image clarity and model settings.
|
| 395 |
""")
|
| 396 |
-
|
| 397 |
# 右側 - 結果顯示區
|
| 398 |
with gr.Column(scale=6, elem_classes="output-panel"):
|
| 399 |
with gr.Tabs(elem_classes="tabs"):
|
| 400 |
with gr.Tab("Detection Result"):
|
| 401 |
result_image = gr.Image(type="pil", label="Detection Result")
|
| 402 |
-
|
| 403 |
-
#
|
| 404 |
with gr.Group(elem_classes="result-details-box"):
|
| 405 |
gr.HTML('<div class="section-heading">Detection Details</div>')
|
| 406 |
# 文本框設置,讓顯示會更寬
|
|
@@ -410,20 +212,20 @@ def create_interface():
|
|
| 410 |
max_lines=15,
|
| 411 |
elem_classes="wide-result-text",
|
| 412 |
elem_id="detection-details",
|
| 413 |
-
container=False,
|
| 414 |
-
scale=2,
|
| 415 |
-
min_width=600
|
| 416 |
)
|
| 417 |
-
|
| 418 |
with gr.Tab("Statistics"):
|
| 419 |
with gr.Row():
|
| 420 |
with gr.Column(scale=3, elem_classes="plot-column"):
|
| 421 |
gr.HTML('<div class="section-heading">Object Distribution</div>')
|
| 422 |
plot_output = gr.Plot(
|
| 423 |
-
label=None,
|
| 424 |
elem_classes="large-plot-container"
|
| 425 |
)
|
| 426 |
-
|
| 427 |
# 右側放 JSON 數據比較清晰
|
| 428 |
with gr.Column(scale=2, elem_classes="stats-column"):
|
| 429 |
gr.HTML('<div class="section-heading">Detection Statistics</div>')
|
|
@@ -431,9 +233,9 @@ def create_interface():
|
|
| 431 |
label=None, # remove label
|
| 432 |
elem_classes="enhanced-json-display"
|
| 433 |
)
|
| 434 |
-
|
| 435 |
detect_btn.click(
|
| 436 |
-
fn=
|
| 437 |
inputs=[image_input, current_model, confidence, class_filter],
|
| 438 |
outputs=[result_image, result_text, stats_json, plot_output]
|
| 439 |
)
|
|
@@ -444,155 +246,62 @@ def create_interface():
|
|
| 444 |
inputs=[model_dropdown],
|
| 445 |
outputs=[current_model, model_info]
|
| 446 |
)
|
| 447 |
-
|
| 448 |
# each classes link
|
| 449 |
people_classes = [0] # 人
|
| 450 |
vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # 各種車輛
|
| 451 |
animals_classes = list(range(14, 24)) # COCO 中的動物
|
| 452 |
common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # 常見家居物品
|
| 453 |
-
|
| 454 |
# Linked the quik buttom
|
| 455 |
people_btn.click(
|
| 456 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
|
| 457 |
outputs=class_filter
|
| 458 |
)
|
| 459 |
-
|
| 460 |
vehicles_btn.click(
|
| 461 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
|
| 462 |
outputs=class_filter
|
| 463 |
)
|
| 464 |
-
|
| 465 |
animals_btn.click(
|
| 466 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
|
| 467 |
outputs=class_filter
|
| 468 |
)
|
| 469 |
-
|
| 470 |
objects_btn.click(
|
| 471 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
|
| 472 |
outputs=class_filter
|
| 473 |
)
|
| 474 |
-
|
| 475 |
example_images = [
|
| 476 |
"room_01.jpg",
|
| 477 |
"street_01.jpg",
|
| 478 |
"street_02.jpg",
|
| 479 |
"street_03.jpg"
|
| 480 |
]
|
| 481 |
-
|
| 482 |
# add example images
|
| 483 |
gr.Examples(
|
| 484 |
examples=example_images,
|
| 485 |
inputs=image_input,
|
| 486 |
-
outputs=None,
|
| 487 |
-
fn=None,
|
| 488 |
-
cache_examples=False,
|
| 489 |
)
|
| 490 |
-
|
| 491 |
-
#
|
| 492 |
gr.HTML("""
|
| 493 |
<div class="footer">
|
| 494 |
<p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
|
| 495 |
<p>Model can detect 80 different classes of objects</p>
|
| 496 |
</div>
|
| 497 |
""")
|
| 498 |
-
|
| 499 |
-
return demo
|
| 500 |
-
|
| 501 |
-
@spaces.GPU
|
| 502 |
-
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
|
| 503 |
-
"""
|
| 504 |
-
Process image and create plots for statistics with enhanced visualization
|
| 505 |
-
|
| 506 |
-
Args:
|
| 507 |
-
image: Input image
|
| 508 |
-
model_name: Name of the model to use
|
| 509 |
-
confidence_threshold: Confidence threshold for detection
|
| 510 |
-
filter_classes: Optional list of classes to filter results
|
| 511 |
-
|
| 512 |
-
Returns:
|
| 513 |
-
Tuple of (result_image, result_text, formatted_stats, plot_figure)
|
| 514 |
-
"""
|
| 515 |
-
global model_instances
|
| 516 |
-
|
| 517 |
-
if model_name not in model_instances:
|
| 518 |
-
print(f"Creating new model instance for {model_name}")
|
| 519 |
-
model_instances[model_name] = DetectionModel(model_name=model_name, confidence=confidence_threshold, iou=0.45)
|
| 520 |
-
else:
|
| 521 |
-
print(f"Using existing model instance for {model_name}")
|
| 522 |
-
model_instances[model_name].confidence = confidence_threshold
|
| 523 |
-
|
| 524 |
-
class_ids = None
|
| 525 |
-
if filter_classes:
|
| 526 |
-
class_ids = []
|
| 527 |
-
for class_str in filter_classes:
|
| 528 |
-
try:
|
| 529 |
-
# Extract ID from format "id: name"
|
| 530 |
-
class_id = int(class_str.split(":")[0].strip())
|
| 531 |
-
class_ids.append(class_id)
|
| 532 |
-
except:
|
| 533 |
-
continue
|
| 534 |
-
|
| 535 |
-
# Execute detection
|
| 536 |
-
result_image, result_text, stats = process_image(
|
| 537 |
-
image,
|
| 538 |
-
model_instances[model_name],
|
| 539 |
-
confidence_threshold,
|
| 540 |
-
class_ids
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
# Format the statistics for better display
|
| 544 |
-
formatted_stats = format_json_for_display(stats)
|
| 545 |
-
|
| 546 |
-
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
|
| 547 |
-
# Create the table
|
| 548 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
| 549 |
-
ax.text(0.5, 0.5, "No detection data available",
|
| 550 |
-
ha='center', va='center', fontsize=14, fontfamily='Arial')
|
| 551 |
-
ax.set_xlim(0, 1)
|
| 552 |
-
ax.set_ylim(0, 1)
|
| 553 |
-
ax.axis('off')
|
| 554 |
-
plot_figure = fig
|
| 555 |
-
else:
|
| 556 |
-
# prepare visualization data
|
| 557 |
-
viz_data = {
|
| 558 |
-
"total_objects": stats.get("total_objects", 0),
|
| 559 |
-
"average_confidence": stats.get("average_confidence", 0),
|
| 560 |
-
"class_data": []
|
| 561 |
-
}
|
| 562 |
-
|
| 563 |
-
# get the color map
|
| 564 |
-
color_mapper_instance = ColorMapper()
|
| 565 |
-
|
| 566 |
-
# class data
|
| 567 |
-
available_classes = dict(get_all_classes())
|
| 568 |
-
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
|
| 569 |
-
# search class ID
|
| 570 |
-
class_id = -1
|
| 571 |
-
for id, name in available_classes.items():
|
| 572 |
-
if name == cls_name:
|
| 573 |
-
class_id = id
|
| 574 |
-
break
|
| 575 |
-
|
| 576 |
-
cls_data = {
|
| 577 |
-
"name": cls_name,
|
| 578 |
-
"class_id": class_id,
|
| 579 |
-
"count": cls_stats.get("count", 0),
|
| 580 |
-
"average_confidence": cls_stats.get("average_confidence", 0),
|
| 581 |
-
"color": color_mapper_instance.get_color(class_id if class_id >= 0 else cls_name)
|
| 582 |
-
}
|
| 583 |
-
|
| 584 |
-
viz_data["class_data"].append(cls_data)
|
| 585 |
-
|
| 586 |
-
# descending order
|
| 587 |
-
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
|
| 588 |
-
|
| 589 |
-
plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
|
| 590 |
-
|
| 591 |
-
return result_image, result_text, formatted_stats, plot_figure
|
| 592 |
|
|
|
|
| 593 |
|
| 594 |
if __name__ == "__main__":
|
| 595 |
import time
|
| 596 |
-
|
| 597 |
demo = create_interface()
|
| 598 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 5 |
from typing import Dict, List, Any, Optional, Tuple
|
| 6 |
+
import spaces
|
| 7 |
|
| 8 |
from detection_model import DetectionModel
|
| 9 |
from color_mapper import ColorMapper
|
|
|
|
| 10 |
from evaluation_metrics import EvaluationMetrics
|
| 11 |
from style import Style
|
| 12 |
+
from image_processor import ImageProcessor
|
| 13 |
|
| 14 |
+
# Initialize image processor
|
| 15 |
+
image_processor = ImageProcessor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def get_all_classes():
|
| 18 |
"""
|
| 19 |
Get all available COCO classes from the currently active model or fallback to standard COCO classes
|
| 20 |
+
|
| 21 |
Returns:
|
| 22 |
List of tuples (class_id, class_name)
|
| 23 |
"""
|
|
|
|
|
|
|
| 24 |
# Try to get class names from any loaded model
|
| 25 |
+
for model_name, model_instance in image_processor.model_instances.items():
|
| 26 |
if model_instance and model_instance.is_model_loaded:
|
| 27 |
try:
|
| 28 |
class_names = model_instance.class_names
|
| 29 |
return [(idx, name) for idx, name in class_names.items()]
|
| 30 |
except Exception:
|
| 31 |
pass
|
| 32 |
+
|
| 33 |
# Fallback to standard COCO classes
|
| 34 |
return [
|
| 35 |
(0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
|
| 36 |
(5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
|
| 37 |
+
(10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'),
|
| 38 |
(14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
|
| 39 |
(20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
|
| 40 |
(25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
|
| 41 |
(30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
|
| 42 |
+
(35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'),
|
| 43 |
(39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
|
| 44 |
+
(44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'),
|
| 45 |
(49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
|
| 46 |
+
(54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'),
|
| 47 |
(59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
|
| 48 |
+
(64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'),
|
| 49 |
(69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
|
| 50 |
+
(74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'),
|
| 51 |
(79, 'toothbrush')
|
| 52 |
]
|
| 53 |
|
| 54 |
+
@spaces.GPU
|
| 55 |
+
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
|
| 56 |
+
"""
|
| 57 |
+
Process image and create plots for statistics with enhanced visualization
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
image: Input image
|
| 61 |
+
model_name: Name of the model to use
|
| 62 |
+
confidence_threshold: Confidence threshold for detection
|
| 63 |
+
filter_classes: Optional list of classes to filter results
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
Tuple of (result_image, result_text, formatted_stats, plot_figure)
|
| 67 |
+
"""
|
| 68 |
+
class_ids = None
|
| 69 |
+
if filter_classes:
|
| 70 |
+
class_ids = []
|
| 71 |
+
for class_str in filter_classes:
|
| 72 |
+
try:
|
| 73 |
+
# Extract ID from format "id: name"
|
| 74 |
+
class_id = int(class_str.split(":")[0].strip())
|
| 75 |
+
class_ids.append(class_id)
|
| 76 |
+
except:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
# Execute detection
|
| 80 |
+
result_image, result_text, stats = image_processor.process_image(
|
| 81 |
+
image,
|
| 82 |
+
model_name,
|
| 83 |
+
confidence_threshold,
|
| 84 |
+
class_ids
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Format the statistics for better display
|
| 88 |
+
formatted_stats = image_processor.format_json_for_display(stats)
|
| 89 |
+
|
| 90 |
+
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
|
| 91 |
+
# Create the table
|
| 92 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 93 |
+
ax.text(0.5, 0.5, "No detection data available",
|
| 94 |
+
ha='center', va='center', fontsize=14, fontfamily='Arial')
|
| 95 |
+
ax.set_xlim(0, 1)
|
| 96 |
+
ax.set_ylim(0, 1)
|
| 97 |
+
ax.axis('off')
|
| 98 |
+
plot_figure = fig
|
| 99 |
+
else:
|
| 100 |
+
# Prepare visualization data
|
| 101 |
+
available_classes = dict(get_all_classes())
|
| 102 |
+
viz_data = image_processor.prepare_visualization_data(stats, available_classes)
|
| 103 |
+
|
| 104 |
+
# Create plot
|
| 105 |
+
plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
|
| 106 |
+
|
| 107 |
+
return result_image, result_text, formatted_stats, plot_figure
|
| 108 |
+
|
| 109 |
def create_interface():
|
| 110 |
"""創建 Gradio 界面,包含美化的視覺效果"""
|
| 111 |
css = Style.get_css()
|
|
|
|
| 114 |
available_models = DetectionModel.get_available_models()
|
| 115 |
model_choices = [model["model_file"] for model in available_models]
|
| 116 |
model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
|
| 117 |
+
|
| 118 |
# 可用類別過濾選項
|
| 119 |
available_classes = get_all_classes()
|
| 120 |
class_choices = [f"{id}: {name}" for id, name in available_classes]
|
| 121 |
+
|
| 122 |
# 創建 Gradio Blocks 界面
|
| 123 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
|
| 124 |
# 頁面頂部標題
|
|
|
|
| 132 |
""")
|
| 133 |
|
| 134 |
current_model = gr.State("yolov8m.pt") # use medium size model as defualt
|
| 135 |
+
|
| 136 |
+
# 主要內容區
|
| 137 |
with gr.Row(equal_height=True):
|
| 138 |
# 左側 - 輸入控制區(可上傳圖片)
|
| 139 |
with gr.Column(scale=4, elem_classes="input-panel"):
|
| 140 |
with gr.Group():
|
| 141 |
gr.HTML('<div class="section-heading">Upload Image</div>')
|
| 142 |
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
|
| 143 |
+
|
| 144 |
with gr.Accordion("Advanced Settings", open=False):
|
| 145 |
with gr.Row():
|
| 146 |
model_dropdown = gr.Dropdown(
|
| 147 |
choices=model_choices,
|
| 148 |
+
value="yolov8m.pt",
|
| 149 |
label="Select Model",
|
| 150 |
info="Choose different models based on your needs for speed vs. accuracy"
|
| 151 |
)
|
| 152 |
+
|
| 153 |
# display model info
|
| 154 |
model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
|
| 155 |
|
| 156 |
confidence = gr.Slider(
|
| 157 |
+
minimum=0.1,
|
| 158 |
+
maximum=0.9,
|
| 159 |
+
value=0.25,
|
| 160 |
+
step=0.05,
|
| 161 |
label="Confidence Threshold",
|
| 162 |
info="Higher values show fewer but more confident detections"
|
| 163 |
)
|
| 164 |
+
|
| 165 |
with gr.Accordion("Filter Classes", open=False):
|
| 166 |
# 常見物件類別快速選擇按鈕
|
| 167 |
gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
|
|
|
|
| 170 |
vehicles_btn = gr.Button("Vehicles", size="sm")
|
| 171 |
animals_btn = gr.Button("Animals", size="sm")
|
| 172 |
objects_btn = gr.Button("Common Objects", size="sm")
|
| 173 |
+
|
| 174 |
# 類別選擇下拉框
|
| 175 |
class_filter = gr.Dropdown(
|
| 176 |
choices=class_choices,
|
|
|
|
| 178 |
label="Select Classes to Display",
|
| 179 |
info="Leave empty to show all detected objects"
|
| 180 |
)
|
| 181 |
+
|
| 182 |
# detect buttom
|
| 183 |
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
|
| 184 |
+
|
| 185 |
# 使用說明區
|
| 186 |
with gr.Group(elem_classes="how-to-use"):
|
| 187 |
gr.HTML('<div class="section-heading">How to Use</div>')
|
|
|
|
| 190 |
2. (Optional) Adjust settings like confidence threshold or model size (n, m, x)
|
| 191 |
3. Optionally filter to specific object classes
|
| 192 |
4. Click "Detect Objects" button
|
| 193 |
+
|
| 194 |
The model will identify objects in your image and display them with bounding boxes.
|
| 195 |
+
|
| 196 |
**Note:** Detection quality depends on image clarity and model settings.
|
| 197 |
""")
|
| 198 |
+
|
| 199 |
# 右側 - 結果顯示區
|
| 200 |
with gr.Column(scale=6, elem_classes="output-panel"):
|
| 201 |
with gr.Tabs(elem_classes="tabs"):
|
| 202 |
with gr.Tab("Detection Result"):
|
| 203 |
result_image = gr.Image(type="pil", label="Detection Result")
|
| 204 |
+
|
| 205 |
+
# details summary
|
| 206 |
with gr.Group(elem_classes="result-details-box"):
|
| 207 |
gr.HTML('<div class="section-heading">Detection Details</div>')
|
| 208 |
# 文本框設置,讓顯示會更寬
|
|
|
|
| 212 |
max_lines=15,
|
| 213 |
elem_classes="wide-result-text",
|
| 214 |
elem_id="detection-details",
|
| 215 |
+
container=False,
|
| 216 |
+
scale=2,
|
| 217 |
+
min_width=600
|
| 218 |
)
|
| 219 |
+
|
| 220 |
with gr.Tab("Statistics"):
|
| 221 |
with gr.Row():
|
| 222 |
with gr.Column(scale=3, elem_classes="plot-column"):
|
| 223 |
gr.HTML('<div class="section-heading">Object Distribution</div>')
|
| 224 |
plot_output = gr.Plot(
|
| 225 |
+
label=None,
|
| 226 |
elem_classes="large-plot-container"
|
| 227 |
)
|
| 228 |
+
|
| 229 |
# 右側放 JSON 數據比較清晰
|
| 230 |
with gr.Column(scale=2, elem_classes="stats-column"):
|
| 231 |
gr.HTML('<div class="section-heading">Detection Statistics</div>')
|
|
|
|
| 233 |
label=None, # remove label
|
| 234 |
elem_classes="enhanced-json-display"
|
| 235 |
)
|
| 236 |
+
|
| 237 |
detect_btn.click(
|
| 238 |
+
fn=process_and_plot,
|
| 239 |
inputs=[image_input, current_model, confidence, class_filter],
|
| 240 |
outputs=[result_image, result_text, stats_json, plot_output]
|
| 241 |
)
|
|
|
|
| 246 |
inputs=[model_dropdown],
|
| 247 |
outputs=[current_model, model_info]
|
| 248 |
)
|
| 249 |
+
|
| 250 |
# each classes link
|
| 251 |
people_classes = [0] # 人
|
| 252 |
vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # 各種車輛
|
| 253 |
animals_classes = list(range(14, 24)) # COCO 中的動物
|
| 254 |
common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # 常見家居物品
|
| 255 |
+
|
| 256 |
# Linked the quik buttom
|
| 257 |
people_btn.click(
|
| 258 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
|
| 259 |
outputs=class_filter
|
| 260 |
)
|
| 261 |
+
|
| 262 |
vehicles_btn.click(
|
| 263 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
|
| 264 |
outputs=class_filter
|
| 265 |
)
|
| 266 |
+
|
| 267 |
animals_btn.click(
|
| 268 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
|
| 269 |
outputs=class_filter
|
| 270 |
)
|
| 271 |
+
|
| 272 |
objects_btn.click(
|
| 273 |
lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
|
| 274 |
outputs=class_filter
|
| 275 |
)
|
| 276 |
+
|
| 277 |
example_images = [
|
| 278 |
"room_01.jpg",
|
| 279 |
"street_01.jpg",
|
| 280 |
"street_02.jpg",
|
| 281 |
"street_03.jpg"
|
| 282 |
]
|
| 283 |
+
|
| 284 |
# add example images
|
| 285 |
gr.Examples(
|
| 286 |
examples=example_images,
|
| 287 |
inputs=image_input,
|
| 288 |
+
outputs=None,
|
| 289 |
+
fn=None,
|
| 290 |
+
cache_examples=False,
|
| 291 |
)
|
| 292 |
+
|
| 293 |
+
# Footer
|
| 294 |
gr.HTML("""
|
| 295 |
<div class="footer">
|
| 296 |
<p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
|
| 297 |
<p>Model can detect 80 different classes of objects</p>
|
| 298 |
</div>
|
| 299 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
+
return demo
|
| 302 |
|
| 303 |
if __name__ == "__main__":
|
| 304 |
import time
|
| 305 |
+
|
| 306 |
demo = create_interface()
|
| 307 |
demo.launch()
|
image_processor.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import tempfile
|
| 7 |
+
import uuid
|
| 8 |
+
from typing import Dict, List, Any, Optional, Tuple
|
| 9 |
+
|
| 10 |
+
from detection_model import DetectionModel
|
| 11 |
+
from color_mapper import ColorMapper
|
| 12 |
+
from visualization_helper import VisualizationHelper
|
| 13 |
+
from evaluation_metrics import EvaluationMetrics
|
| 14 |
+
|
| 15 |
+
class ImageProcessor:
|
| 16 |
+
"""
|
| 17 |
+
Class for handling image processing and object detection operations
|
| 18 |
+
Separates processing logic from UI components
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self):
|
| 22 |
+
"""Initialize the image processor with required components"""
|
| 23 |
+
self.color_mapper = ColorMapper()
|
| 24 |
+
self.model_instances = {}
|
| 25 |
+
|
| 26 |
+
def get_model_instance(self, model_name: str, confidence: float = 0.25, iou: float = 0.35) -> DetectionModel:
|
| 27 |
+
"""
|
| 28 |
+
Get or create a model instance based on model name
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
model_name: Name of the model to use
|
| 32 |
+
confidence: Confidence threshold for detection
|
| 33 |
+
iou: IoU threshold for non-maximum suppression
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
DetectionModel instance
|
| 37 |
+
"""
|
| 38 |
+
if model_name not in self.model_instances:
|
| 39 |
+
print(f"Creating new model instance for {model_name}")
|
| 40 |
+
self.model_instances[model_name] = DetectionModel(
|
| 41 |
+
model_name=model_name,
|
| 42 |
+
confidence=confidence,
|
| 43 |
+
iou=iou
|
| 44 |
+
)
|
| 45 |
+
else:
|
| 46 |
+
print(f"Using existing model instance for {model_name}")
|
| 47 |
+
self.model_instances[model_name].confidence = confidence
|
| 48 |
+
|
| 49 |
+
return self.model_instances[model_name]
|
| 50 |
+
|
| 51 |
+
def process_image(self, image, model_name: str, confidence_threshold: float, filter_classes: Optional[List[int]] = None) -> Tuple[Any, str, Dict]:
|
| 52 |
+
"""
|
| 53 |
+
Process an image for object detection
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
image: Input image (numpy array or PIL Image)
|
| 57 |
+
model_name: Name of the model to use
|
| 58 |
+
confidence_threshold: Confidence threshold for detection
|
| 59 |
+
filter_classes: Optional list of classes to filter results
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
Tuple of (result_image, result_text, stats_data)
|
| 63 |
+
"""
|
| 64 |
+
# Get model instance
|
| 65 |
+
model_instance = self.get_model_instance(model_name, confidence_threshold)
|
| 66 |
+
|
| 67 |
+
# Initialize key variables
|
| 68 |
+
result = None
|
| 69 |
+
stats = {}
|
| 70 |
+
temp_path = None
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
# Processing input image
|
| 74 |
+
if isinstance(image, np.ndarray):
|
| 75 |
+
# Convert BGR to RGB if needed
|
| 76 |
+
if image.shape[2] == 3:
|
| 77 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 78 |
+
else:
|
| 79 |
+
image_rgb = image
|
| 80 |
+
pil_image = Image.fromarray(image_rgb)
|
| 81 |
+
elif image is None:
|
| 82 |
+
return None, "No image provided. Please upload an image.", {}
|
| 83 |
+
else:
|
| 84 |
+
pil_image = image
|
| 85 |
+
|
| 86 |
+
# Store temp files
|
| 87 |
+
temp_dir = tempfile.gettempdir() # Use system temp directory
|
| 88 |
+
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
|
| 89 |
+
temp_path = os.path.join(temp_dir, temp_filename)
|
| 90 |
+
pil_image.save(temp_path)
|
| 91 |
+
|
| 92 |
+
# Object detection
|
| 93 |
+
result = model_instance.detect(temp_path)
|
| 94 |
+
|
| 95 |
+
if result is None:
|
| 96 |
+
return None, "Detection failed. Please try again with a different image.", {}
|
| 97 |
+
|
| 98 |
+
# Calculate stats
|
| 99 |
+
stats = EvaluationMetrics.calculate_basic_stats(result)
|
| 100 |
+
|
| 101 |
+
# Add space calculation
|
| 102 |
+
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
|
| 103 |
+
stats["spatial_metrics"] = spatial_metrics
|
| 104 |
+
|
| 105 |
+
# Apply filter if specified
|
| 106 |
+
if filter_classes and len(filter_classes) > 0:
|
| 107 |
+
# Get classes, boxes, confidence
|
| 108 |
+
classes = result.boxes.cls.cpu().numpy().astype(int)
|
| 109 |
+
confs = result.boxes.conf.cpu().numpy()
|
| 110 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
| 111 |
+
|
| 112 |
+
mask = np.zeros_like(classes, dtype=bool)
|
| 113 |
+
for cls_id in filter_classes:
|
| 114 |
+
mask = np.logical_or(mask, classes == cls_id)
|
| 115 |
+
|
| 116 |
+
filtered_stats = {
|
| 117 |
+
"total_objects": int(np.sum(mask)),
|
| 118 |
+
"class_statistics": {},
|
| 119 |
+
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
|
| 120 |
+
"spatial_metrics": stats["spatial_metrics"]
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
# Update stats
|
| 124 |
+
names = result.names
|
| 125 |
+
for cls, conf in zip(classes[mask], confs[mask]):
|
| 126 |
+
cls_name = names[int(cls)]
|
| 127 |
+
if cls_name not in filtered_stats["class_statistics"]:
|
| 128 |
+
filtered_stats["class_statistics"][cls_name] = {
|
| 129 |
+
"count": 0,
|
| 130 |
+
"average_confidence": 0
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
filtered_stats["class_statistics"][cls_name]["count"] += 1
|
| 134 |
+
filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
|
| 135 |
+
|
| 136 |
+
stats = filtered_stats
|
| 137 |
+
|
| 138 |
+
viz_data = EvaluationMetrics.generate_visualization_data(
|
| 139 |
+
result,
|
| 140 |
+
self.color_mapper.get_all_colors()
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
result_image = VisualizationHelper.visualize_detection(
|
| 144 |
+
temp_path, result, color_mapper=self.color_mapper, figsize=(12, 12), return_pil=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
result_text = EvaluationMetrics.format_detection_summary(viz_data)
|
| 148 |
+
|
| 149 |
+
return result_image, result_text, stats
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
error_message = f"Error Occurs: {str(e)}"
|
| 153 |
+
import traceback
|
| 154 |
+
traceback.print_exc()
|
| 155 |
+
print(error_message)
|
| 156 |
+
return None, error_message, {}
|
| 157 |
+
|
| 158 |
+
finally:
|
| 159 |
+
if temp_path and os.path.exists(temp_path):
|
| 160 |
+
try:
|
| 161 |
+
os.remove(temp_path)
|
| 162 |
+
except Exception as e:
|
| 163 |
+
print(f"Cannot delete temp files {temp_path}: {str(e)}")
|
| 164 |
+
|
| 165 |
+
def format_result_text(self, stats: Dict) -> str:
|
| 166 |
+
"""
|
| 167 |
+
Format detection statistics into readable text with improved spacing
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
stats: Dictionary containing detection statistics
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
Formatted text summary
|
| 174 |
+
"""
|
| 175 |
+
if not stats or "total_objects" not in stats:
|
| 176 |
+
return "No objects detected."
|
| 177 |
+
|
| 178 |
+
# 減少不必要的空行
|
| 179 |
+
lines = [
|
| 180 |
+
f"Detected {stats['total_objects']} objects.",
|
| 181 |
+
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
|
| 182 |
+
"Objects by class:"
|
| 183 |
+
]
|
| 184 |
+
|
| 185 |
+
if "class_statistics" in stats and stats["class_statistics"]:
|
| 186 |
+
# 按計數排序類別
|
| 187 |
+
sorted_classes = sorted(
|
| 188 |
+
stats["class_statistics"].items(),
|
| 189 |
+
key=lambda x: x[1]["count"],
|
| 190 |
+
reverse=True
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
for cls_name, cls_stats in sorted_classes:
|
| 194 |
+
count = cls_stats["count"]
|
| 195 |
+
conf = cls_stats.get("average_confidence", 0)
|
| 196 |
+
|
| 197 |
+
item_text = "item" if count == 1 else "items"
|
| 198 |
+
lines.append(f"• {cls_name}: {count} {item_text} (avg conf: {conf:.2f})")
|
| 199 |
+
else:
|
| 200 |
+
lines.append("No class information available.")
|
| 201 |
+
|
| 202 |
+
# 添加空間信息
|
| 203 |
+
if "spatial_metrics" in stats and "spatial_distribution" in stats["spatial_metrics"]:
|
| 204 |
+
lines.append("Object Distribution:")
|
| 205 |
+
|
| 206 |
+
dist = stats["spatial_metrics"]["spatial_distribution"]
|
| 207 |
+
x_mean = dist.get("x_mean", 0)
|
| 208 |
+
y_mean = dist.get("y_mean", 0)
|
| 209 |
+
|
| 210 |
+
# 描述物體的大致位置
|
| 211 |
+
if x_mean < 0.33:
|
| 212 |
+
h_pos = "on the left side"
|
| 213 |
+
elif x_mean < 0.67:
|
| 214 |
+
h_pos = "in the center"
|
| 215 |
+
else:
|
| 216 |
+
h_pos = "on the right side"
|
| 217 |
+
|
| 218 |
+
if y_mean < 0.33:
|
| 219 |
+
v_pos = "in the upper part"
|
| 220 |
+
elif y_mean < 0.67:
|
| 221 |
+
v_pos = "in the middle"
|
| 222 |
+
else:
|
| 223 |
+
v_pos = "in the lower part"
|
| 224 |
+
|
| 225 |
+
lines.append(f"• Most objects appear {h_pos} {v_pos} of the image")
|
| 226 |
+
|
| 227 |
+
return "\n".join(lines)
|
| 228 |
+
|
| 229 |
+
def format_json_for_display(self, stats: Dict) -> Dict:
|
| 230 |
+
"""
|
| 231 |
+
Format statistics JSON for better display
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
stats: Raw statistics dictionary
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
Formatted statistics structure for display
|
| 238 |
+
"""
|
| 239 |
+
# Create a cleaner copy of the stats for display
|
| 240 |
+
display_stats = {}
|
| 241 |
+
|
| 242 |
+
# Add summary section
|
| 243 |
+
display_stats["summary"] = {
|
| 244 |
+
"total_objects": stats.get("total_objects", 0),
|
| 245 |
+
"average_confidence": round(stats.get("average_confidence", 0), 3)
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
# Add class statistics in a more organized way
|
| 249 |
+
if "class_statistics" in stats and stats["class_statistics"]:
|
| 250 |
+
# Sort classes by count (descending)
|
| 251 |
+
sorted_classes = sorted(
|
| 252 |
+
stats["class_statistics"].items(),
|
| 253 |
+
key=lambda x: x[1].get("count", 0),
|
| 254 |
+
reverse=True
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
class_stats = {}
|
| 258 |
+
for cls_name, cls_data in sorted_classes:
|
| 259 |
+
class_stats[cls_name] = {
|
| 260 |
+
"count": cls_data.get("count", 0),
|
| 261 |
+
"average_confidence": round(cls_data.get("average_confidence", 0), 3)
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
display_stats["detected_objects"] = class_stats
|
| 265 |
+
|
| 266 |
+
# Simplify spatial metrics
|
| 267 |
+
if "spatial_metrics" in stats:
|
| 268 |
+
spatial = stats["spatial_metrics"]
|
| 269 |
+
|
| 270 |
+
# Simplify spatial distribution
|
| 271 |
+
if "spatial_distribution" in spatial:
|
| 272 |
+
dist = spatial["spatial_distribution"]
|
| 273 |
+
display_stats["spatial"] = {
|
| 274 |
+
"distribution": {
|
| 275 |
+
"x_mean": round(dist.get("x_mean", 0), 3),
|
| 276 |
+
"y_mean": round(dist.get("y_mean", 0), 3),
|
| 277 |
+
"x_std": round(dist.get("x_std", 0), 3),
|
| 278 |
+
"y_std": round(dist.get("y_std", 0), 3)
|
| 279 |
+
}
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
# Add simplified size information
|
| 283 |
+
if "size_distribution" in spatial:
|
| 284 |
+
size = spatial["size_distribution"]
|
| 285 |
+
display_stats["spatial"]["size"] = {
|
| 286 |
+
"mean_area": round(size.get("mean_area", 0), 3),
|
| 287 |
+
"min_area": round(size.get("min_area", 0), 3),
|
| 288 |
+
"max_area": round(size.get("max_area", 0), 3)
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
return display_stats
|
| 292 |
+
|
| 293 |
+
def prepare_visualization_data(self, stats: Dict, available_classes: Dict[int, str]) -> Dict:
|
| 294 |
+
"""
|
| 295 |
+
Prepare data for visualization based on detection statistics
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
stats: Detection statistics
|
| 299 |
+
available_classes: Dictionary of available class IDs and names
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
Visualization data dictionary
|
| 303 |
+
"""
|
| 304 |
+
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
|
| 305 |
+
return {"error": "No detection data available"}
|
| 306 |
+
|
| 307 |
+
# Prepare visualization data
|
| 308 |
+
viz_data = {
|
| 309 |
+
"total_objects": stats.get("total_objects", 0),
|
| 310 |
+
"average_confidence": stats.get("average_confidence", 0),
|
| 311 |
+
"class_data": []
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
# Class data
|
| 315 |
+
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
|
| 316 |
+
# Search class ID
|
| 317 |
+
class_id = -1
|
| 318 |
+
for id, name in available_classes.items():
|
| 319 |
+
if name == cls_name:
|
| 320 |
+
class_id = id
|
| 321 |
+
break
|
| 322 |
+
|
| 323 |
+
cls_data = {
|
| 324 |
+
"name": cls_name,
|
| 325 |
+
"class_id": class_id,
|
| 326 |
+
"count": cls_stats.get("count", 0),
|
| 327 |
+
"average_confidence": cls_stats.get("average_confidence", 0),
|
| 328 |
+
"color": self.color_mapper.get_color(class_id if class_id >= 0 else cls_name)
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
viz_data["class_data"].append(cls_data)
|
| 332 |
+
|
| 333 |
+
# Descending order
|
| 334 |
+
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
|
| 335 |
+
|
| 336 |
+
return viz_data
|