Spaces:
Sleeping
Sleeping
TinyLlama/TinyLlama-1.1B-Chat-v1.0
Browse files
main.py
CHANGED
@@ -1,59 +1,53 @@
|
|
1 |
import os
|
2 |
-
|
3 |
os.environ["HF_HOME"] = "/tmp/hf"
|
4 |
-
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf/datasets"
|
5 |
-
os.environ["HF_METRICS_CACHE"] = "/tmp/hf/metrics"
|
6 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
|
|
|
7 |
from fastapi import FastAPI
|
8 |
from pydantic import BaseModel
|
9 |
-
from transformers import
|
10 |
from fastapi.responses import StreamingResponse
|
11 |
-
import torch
|
12 |
import threading
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
|
17 |
-
model_id = "microsoft/phi-2"
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
20 |
|
21 |
-
# Modelo de entrada
|
22 |
class ChatRequest(BaseModel):
|
23 |
message: str
|
24 |
|
25 |
@app.post("/chat/stream")
|
26 |
async def chat_stream(request: ChatRequest):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
inputs = tokenizer(prompt, return_tensors="pt")
|
33 |
input_ids = inputs["input_ids"]
|
34 |
attention_mask = inputs["attention_mask"]
|
35 |
|
36 |
-
# Streamer para obtener tokens generados poco a poco
|
37 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
38 |
-
|
39 |
-
# Iniciar la generaci贸n en un hilo aparte
|
40 |
generation_kwargs = dict(
|
41 |
-
input_ids=input_ids,
|
42 |
attention_mask=attention_mask,
|
43 |
-
max_new_tokens=48,
|
44 |
temperature=0.7,
|
45 |
top_p=0.9,
|
46 |
do_sample=True,
|
47 |
streamer=streamer,
|
48 |
-
pad_token_id=tokenizer.eos_token_id
|
49 |
)
|
50 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
51 |
thread.start()
|
52 |
|
53 |
-
# StreamingResponse espera un generador que devuelva texto
|
54 |
async def event_generator():
|
55 |
for new_text in streamer:
|
56 |
yield new_text
|
57 |
|
58 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
59 |
-
|
|
|
1 |
import os
|
|
|
2 |
os.environ["HF_HOME"] = "/tmp/hf"
|
|
|
|
|
3 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
|
4 |
+
|
5 |
from fastapi import FastAPI
|
6 |
from pydantic import BaseModel
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
8 |
from fastapi.responses import StreamingResponse
|
|
|
9 |
import threading
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto")
|
16 |
|
|
|
17 |
class ChatRequest(BaseModel):
|
18 |
message: str
|
19 |
|
20 |
@app.post("/chat/stream")
|
21 |
async def chat_stream(request: ChatRequest):
|
22 |
+
# Usar plantilla de chat, instrucci贸n clara en espa帽ol
|
23 |
+
messages = [
|
24 |
+
{
|
25 |
+
"role": "system",
|
26 |
+
"content": "Eres un asistente IA amigable y responde siempre en espa帽ol, de forma breve y clara.",
|
27 |
+
},
|
28 |
+
{"role": "user", "content": request.message},
|
29 |
+
]
|
30 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
31 |
inputs = tokenizer(prompt, return_tensors="pt")
|
32 |
input_ids = inputs["input_ids"]
|
33 |
attention_mask = inputs["attention_mask"]
|
34 |
|
|
|
35 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
36 |
generation_kwargs = dict(
|
37 |
+
input_ids=input_ids,
|
38 |
attention_mask=attention_mask,
|
39 |
+
max_new_tokens=48,
|
40 |
temperature=0.7,
|
41 |
top_p=0.9,
|
42 |
do_sample=True,
|
43 |
streamer=streamer,
|
44 |
+
pad_token_id=tokenizer.eos_token_id,
|
45 |
)
|
46 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
47 |
thread.start()
|
48 |
|
|
|
49 |
async def event_generator():
|
50 |
for new_text in streamer:
|
51 |
yield new_text
|
52 |
|
53 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
|