Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,49 +1,53 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
os.environ["HF_HOME"] = "/tmp/hf"
|
4 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
|
5 |
-
|
6 |
from fastapi import FastAPI
|
7 |
from pydantic import BaseModel
|
8 |
-
from transformers import
|
9 |
from fastapi.responses import StreamingResponse
|
|
|
10 |
import threading
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
|
|
17 |
|
|
|
18 |
class ChatRequest(BaseModel):
|
19 |
message: str
|
20 |
|
21 |
@app.post("/chat/stream")
|
22 |
async def chat_stream(request: ChatRequest):
|
23 |
-
prompt = f"Responde en espa帽ol de forma clara y breve como un asistente IA
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
input_ids = tokenizer.build_inputs_with_special_tokens(token_ids)
|
30 |
-
input_ids = torch.tensor([input_ids])
|
31 |
|
32 |
-
|
|
|
|
|
|
|
33 |
generation_kwargs = dict(
|
34 |
-
input_ids=input_ids,
|
35 |
-
|
|
|
36 |
temperature=0.7,
|
37 |
top_p=0.9,
|
38 |
do_sample=True,
|
39 |
streamer=streamer,
|
40 |
-
pad_token_id=
|
41 |
)
|
42 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
43 |
thread.start()
|
44 |
|
|
|
45 |
async def event_generator():
|
46 |
for new_text in streamer:
|
47 |
yield new_text
|
48 |
|
49 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
+
import torch
|
6 |
import threading
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Cargar modelo y tokenizer de Phi-2 (usa el modelo de Hugging Face Hub)
|
11 |
+
model_id = "HuggingFaceTB/SmolLM2-135M"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
14 |
|
15 |
+
# Modelo de entrada
|
16 |
class ChatRequest(BaseModel):
|
17 |
message: str
|
18 |
|
19 |
@app.post("/chat/stream")
|
20 |
async def chat_stream(request: ChatRequest):
|
21 |
+
prompt = f"""Responde en espa帽ol de forma clara y breve como un asistente IA.
|
22 |
+
Usuario: {request.message}
|
23 |
+
IA:"""
|
24 |
|
25 |
+
# Tokenizar entrada
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
27 |
+
input_ids = inputs["input_ids"]
|
28 |
+
attention_mask = inputs["attention_mask"]
|
|
|
|
|
29 |
|
30 |
+
# Streamer para obtener tokens generados poco a poco
|
31 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=False, skip_special_tokens=False)
|
32 |
+
|
33 |
+
# Iniciar la generaci贸n en un hilo aparte
|
34 |
generation_kwargs = dict(
|
35 |
+
input_ids=input_ids,
|
36 |
+
attention_mask=attention_mask,
|
37 |
+
max_new_tokens=48, # Puedes ajustar este valor para m谩s/menos tokens
|
38 |
temperature=0.7,
|
39 |
top_p=0.9,
|
40 |
do_sample=True,
|
41 |
streamer=streamer,
|
42 |
+
pad_token_id=tokenizer.eos_token_id
|
43 |
)
|
44 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
45 |
thread.start()
|
46 |
|
47 |
+
# StreamingResponse espera un generador que devuelva texto
|
48 |
async def event_generator():
|
49 |
for new_text in streamer:
|
50 |
yield new_text
|
51 |
|
52 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
53 |
+
|