Spaces:
Sleeping
Sleeping
Initial commit
Browse files- README.md +2 -2
- app.py +364 -52
- requirements.txt +10 -1
README.md
CHANGED
@@ -3,8 +3,8 @@ title: Rag Re Ranking
|
|
3 |
emoji: π¬
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
3 |
emoji: π¬
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
+
sdk: stremlit
|
7 |
+
sdk_version: 1.35.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -1,64 +1,376 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import boto3
|
3 |
+
import json
|
4 |
+
import chromadb
|
5 |
+
from datasets import load_dataset
|
6 |
+
import uuid
|
7 |
+
import time
|
8 |
|
9 |
+
# Simple function to connect to AWS Bedrock
|
10 |
+
def connect_to_bedrock():
|
11 |
+
client = boto3.client('bedrock-runtime', region_name='us-east-1')
|
12 |
+
return client
|
13 |
|
14 |
+
# Simple function to load Wikipedia documents
|
15 |
+
def load_wikipedia_docs(num_docs=100):
|
16 |
+
st.write(f"π Loading {num_docs} Wikipedia documents...")
|
17 |
+
|
18 |
+
# Load Wikipedia dataset from Hugging Face
|
19 |
+
dataset = load_dataset("Cohere/wikipedia-22-12-simple-embeddings", split="train")
|
20 |
+
|
21 |
+
# Take only the first num_docs documents
|
22 |
+
documents = []
|
23 |
+
for i in range(min(num_docs, len(dataset))):
|
24 |
+
doc = dataset[i]
|
25 |
+
documents.append({
|
26 |
+
'text': doc['text'],
|
27 |
+
'title': doc.get('title', f'Document {i+1}'),
|
28 |
+
'id': str(i)
|
29 |
+
})
|
30 |
+
|
31 |
+
return documents
|
32 |
|
33 |
+
# Simple function to split text into chunks
|
34 |
+
def split_into_chunks(documents, chunk_size=500):
|
35 |
+
st.write("βοΈ Splitting documents into 500-character chunks...")
|
36 |
+
|
37 |
+
chunks = []
|
38 |
+
chunk_id = 0
|
39 |
+
|
40 |
+
for doc in documents:
|
41 |
+
text = doc['text']
|
42 |
+
title = doc['title']
|
43 |
+
|
44 |
+
# Split text into chunks of 500 characters
|
45 |
+
for i in range(0, len(text), chunk_size):
|
46 |
+
chunk_text = text[i:i + chunk_size]
|
47 |
+
if len(chunk_text.strip()) > 50: # Only keep meaningful chunks
|
48 |
+
chunks.append({
|
49 |
+
'id': str(chunk_id),
|
50 |
+
'text': chunk_text,
|
51 |
+
'title': title,
|
52 |
+
'doc_id': doc['id']
|
53 |
+
})
|
54 |
+
chunk_id += 1
|
55 |
+
|
56 |
+
return chunks
|
57 |
|
58 |
+
# Get embeddings from Bedrock Titan model
|
59 |
+
def get_embeddings(bedrock_client, text):
|
60 |
+
body = json.dumps({
|
61 |
+
"inputText": text
|
62 |
+
})
|
63 |
+
|
64 |
+
response = bedrock_client.invoke_model(
|
65 |
+
modelId="amazon.titan-embed-text-v1",
|
66 |
+
body=body
|
67 |
+
)
|
68 |
+
|
69 |
+
result = json.loads(response['body'].read())
|
70 |
+
return result['embedding']
|
71 |
|
72 |
+
# Store chunks in ChromaDB
|
73 |
+
def store_in_chromadb(bedrock_client, chunks):
|
74 |
+
st.write("πΎ Storing chunks in ChromaDB with embeddings...")
|
75 |
+
|
76 |
+
# Create ChromaDB client
|
77 |
+
chroma_client = chromadb.Client()
|
78 |
+
|
79 |
+
# Create or get collection
|
80 |
+
try:
|
81 |
+
collection = chroma_client.get_collection("wikipedia_chunks")
|
82 |
+
chroma_client.delete_collection("wikipedia_chunks")
|
83 |
+
except:
|
84 |
+
pass
|
85 |
+
|
86 |
+
collection = chroma_client.create_collection("wikipedia_chunks")
|
87 |
+
|
88 |
+
# Prepare data for ChromaDB
|
89 |
+
ids = []
|
90 |
+
texts = []
|
91 |
+
metadatas = []
|
92 |
+
embeddings = []
|
93 |
+
|
94 |
+
progress_bar = st.progress(0)
|
95 |
+
|
96 |
+
for i, chunk in enumerate(chunks):
|
97 |
+
# Get embedding for each chunk
|
98 |
+
embedding = get_embeddings(bedrock_client, chunk['text'])
|
99 |
+
|
100 |
+
ids.append(chunk['id'])
|
101 |
+
texts.append(chunk['text'])
|
102 |
+
metadatas.append({
|
103 |
+
'title': chunk['title'],
|
104 |
+
'doc_id': chunk['doc_id']
|
105 |
+
})
|
106 |
+
embeddings.append(embedding)
|
107 |
+
|
108 |
+
# Update progress
|
109 |
+
progress_bar.progress((i + 1) / len(chunks))
|
110 |
+
|
111 |
+
# Add to ChromaDB in batches of 100
|
112 |
+
if len(ids) == 100 or i == len(chunks) - 1:
|
113 |
+
collection.add(
|
114 |
+
ids=ids,
|
115 |
+
documents=texts,
|
116 |
+
metadatas=metadatas,
|
117 |
+
embeddings=embeddings
|
118 |
+
)
|
119 |
+
ids, texts, metadatas, embeddings = [], [], [], []
|
120 |
+
|
121 |
+
return collection
|
122 |
|
123 |
+
# Simple retrieval without re-ranking
|
124 |
+
def simple_retrieval(collection, bedrock_client, query, top_k=10):
|
125 |
+
# Get query embedding
|
126 |
+
query_embedding = get_embeddings(bedrock_client, query)
|
127 |
+
|
128 |
+
# Search in ChromaDB
|
129 |
+
results = collection.query(
|
130 |
+
query_embeddings=[query_embedding],
|
131 |
+
n_results=top_k
|
132 |
+
)
|
133 |
+
|
134 |
+
# Format results
|
135 |
+
retrieved_docs = []
|
136 |
+
for i in range(len(results['documents'][0])):
|
137 |
+
retrieved_docs.append({
|
138 |
+
'text': results['documents'][0][i],
|
139 |
+
'title': results['metadatas'][0][i]['title'],
|
140 |
+
'distance': results['distances'][0][i]
|
141 |
+
})
|
142 |
+
|
143 |
+
return retrieved_docs
|
144 |
|
145 |
+
# Re-ranking using Claude 3.5
|
146 |
+
def rerank_with_claude(bedrock_client, query, documents, top_k=5):
|
147 |
+
# Create prompt for re-ranking
|
148 |
+
docs_text = ""
|
149 |
+
for i, doc in enumerate(documents):
|
150 |
+
docs_text += f"[{i+1}] {doc['text'][:200]}...\n\n"
|
151 |
+
|
152 |
+
prompt = f"""
|
153 |
+
Given the query: "{query}"
|
154 |
+
|
155 |
+
Please rank the following documents by relevance to the query.
|
156 |
+
Return only the numbers (1, 2, 3, etc.) of the most relevant documents in order, separated by commas.
|
157 |
+
Return exactly {top_k} numbers.
|
158 |
+
|
159 |
+
Documents:
|
160 |
+
{docs_text}
|
161 |
+
|
162 |
+
Most relevant document numbers (in order):
|
163 |
+
"""
|
164 |
+
|
165 |
+
body = json.dumps({
|
166 |
+
"anthropic_version": "bedrock-2023-05-31",
|
167 |
+
"max_tokens": 100,
|
168 |
+
"messages": [{"role": "user", "content": prompt}]
|
169 |
+
})
|
170 |
+
|
171 |
+
response = bedrock_client.invoke_model(
|
172 |
+
modelId="anthropic.claude-3-haiku-20240307-v1:0",
|
173 |
+
body=body
|
174 |
+
)
|
175 |
+
|
176 |
+
result = json.loads(response['body'].read())
|
177 |
+
ranking_text = result['content'][0]['text'].strip()
|
178 |
+
|
179 |
+
try:
|
180 |
+
# Parse the ranking
|
181 |
+
rankings = [int(x.strip()) - 1 for x in ranking_text.split(',')] # Convert to 0-based index
|
182 |
+
|
183 |
+
# Reorder documents based on ranking
|
184 |
+
reranked_docs = []
|
185 |
+
for rank in rankings[:top_k]:
|
186 |
+
if 0 <= rank < len(documents):
|
187 |
+
reranked_docs.append(documents[rank])
|
188 |
+
|
189 |
+
return reranked_docs
|
190 |
+
except:
|
191 |
+
# If parsing fails, return original order
|
192 |
+
return documents[:top_k]
|
193 |
|
194 |
+
# Generate answer using retrieved documents
|
195 |
+
def generate_answer(bedrock_client, query, documents):
|
196 |
+
# Combine documents into context
|
197 |
+
context = "\n\n".join([f"Source: {doc['title']}\n{doc['text']}" for doc in documents])
|
198 |
+
|
199 |
+
prompt = f"""
|
200 |
+
Based on the following information, please answer the question.
|
201 |
+
|
202 |
+
Question: {query}
|
203 |
+
|
204 |
+
Information:
|
205 |
+
{context}
|
206 |
+
|
207 |
+
Please provide a clear and comprehensive answer based on the information above.
|
208 |
+
"""
|
209 |
+
|
210 |
+
body = json.dumps({
|
211 |
+
"anthropic_version": "bedrock-2023-05-31",
|
212 |
+
"max_tokens": 500,
|
213 |
+
"messages": [{"role": "user", "content": prompt}]
|
214 |
+
})
|
215 |
+
|
216 |
+
response = bedrock_client.invoke_model(
|
217 |
+
modelId="anthropic.claude-3-haiku-20240307-v1:0",
|
218 |
+
body=body
|
219 |
+
)
|
220 |
+
|
221 |
+
result = json.loads(response['body'].read())
|
222 |
+
return result['content'][0]['text']
|
223 |
|
224 |
+
# Main app
|
225 |
+
def main():
|
226 |
+
st.title("π Wikipedia Retrieval with Re-ranking")
|
227 |
+
st.write("Compare search results with and without re-ranking!")
|
228 |
+
|
229 |
+
# Initialize session state
|
230 |
+
if 'collection' not in st.session_state:
|
231 |
+
st.session_state.collection = None
|
232 |
+
if 'setup_done' not in st.session_state:
|
233 |
+
st.session_state.setup_done = False
|
234 |
+
|
235 |
+
# Setup section
|
236 |
+
if not st.session_state.setup_done:
|
237 |
+
st.subheader("π οΈ Setup")
|
238 |
+
|
239 |
+
if st.button("π Load Wikipedia Data and Setup ChromaDB"):
|
240 |
+
try:
|
241 |
+
with st.spinner("Setting up... This may take a few minutes..."):
|
242 |
+
# Connect to Bedrock
|
243 |
+
bedrock_client = connect_to_bedrock()
|
244 |
+
|
245 |
+
# Load Wikipedia documents
|
246 |
+
documents = load_wikipedia_docs(100)
|
247 |
+
st.success(f"β
Loaded {len(documents)} documents")
|
248 |
+
|
249 |
+
# Split into chunks
|
250 |
+
chunks = split_into_chunks(documents, 500)
|
251 |
+
st.success(f"β
Created {len(chunks)} chunks")
|
252 |
+
|
253 |
+
# Store in ChromaDB
|
254 |
+
collection = store_in_chromadb(bedrock_client, chunks)
|
255 |
+
st.session_state.collection = collection
|
256 |
+
st.session_state.setup_done = True
|
257 |
+
|
258 |
+
st.success("π Setup complete! You can now test queries below.")
|
259 |
+
st.balloons()
|
260 |
+
|
261 |
+
except Exception as e:
|
262 |
+
st.error(f"β Setup failed: {str(e)}")
|
263 |
+
|
264 |
+
else:
|
265 |
+
st.success("β
Setup completed! ChromaDB is ready with Wikipedia data.")
|
266 |
+
|
267 |
+
# Query testing section
|
268 |
+
st.subheader("π Test Queries")
|
269 |
+
|
270 |
+
# Predefined queries
|
271 |
+
sample_queries = [
|
272 |
+
"What are the main causes of climate change?",
|
273 |
+
"How does quantum computing work?",
|
274 |
+
"What were the social impacts of the industrial revolution?"
|
275 |
+
]
|
276 |
+
|
277 |
+
# Query selection
|
278 |
+
query_option = st.radio("Choose a query:",
|
279 |
+
["Custom Query"] + sample_queries)
|
280 |
+
|
281 |
+
if query_option == "Custom Query":
|
282 |
+
query = st.text_input("Enter your custom query:")
|
283 |
+
else:
|
284 |
+
query = query_option
|
285 |
+
st.write(f"Selected query: **{query}**")
|
286 |
+
|
287 |
+
if query:
|
288 |
+
if st.button("π Compare Retrieval Methods"):
|
289 |
+
try:
|
290 |
+
bedrock_client = connect_to_bedrock()
|
291 |
+
|
292 |
+
st.write("---")
|
293 |
+
|
294 |
+
# Method 1: Simple Retrieval
|
295 |
+
st.subheader("π Method 1: Simple Retrieval (Baseline)")
|
296 |
+
with st.spinner("Performing simple retrieval..."):
|
297 |
+
simple_results = simple_retrieval(st.session_state.collection, bedrock_client, query, 10)
|
298 |
+
simple_top5 = simple_results[:5]
|
299 |
+
|
300 |
+
st.write("**Top 5 Results:**")
|
301 |
+
for i, doc in enumerate(simple_top5, 1):
|
302 |
+
with st.expander(f"{i}. {doc['title']} (Distance: {doc['distance']:.3f})"):
|
303 |
+
st.write(doc['text'][:300] + "...")
|
304 |
+
|
305 |
+
# Generate answer with simple retrieval
|
306 |
+
simple_answer = generate_answer(bedrock_client, query, simple_top5)
|
307 |
+
st.write("**Answer using Simple Retrieval:**")
|
308 |
+
st.info(simple_answer)
|
309 |
+
|
310 |
+
st.write("---")
|
311 |
+
|
312 |
+
# Method 2: Retrieval with Re-ranking
|
313 |
+
st.subheader("π― Method 2: Retrieval with Re-ranking")
|
314 |
+
with st.spinner("Performing retrieval with re-ranking..."):
|
315 |
+
# First get more results
|
316 |
+
initial_results = simple_retrieval(st.session_state.collection, bedrock_client, query, 10)
|
317 |
+
|
318 |
+
# Then re-rank them
|
319 |
+
reranked_results = rerank_with_claude(bedrock_client, query, initial_results, 5)
|
320 |
+
|
321 |
+
st.write("**Top 5 Re-ranked Results:**")
|
322 |
+
for i, doc in enumerate(reranked_results, 1):
|
323 |
+
with st.expander(f"{i}. {doc['title']} (Re-ranked)"):
|
324 |
+
st.write(doc['text'][:300] + "...")
|
325 |
+
|
326 |
+
# Generate answer with re-ranked results
|
327 |
+
reranked_answer = generate_answer(bedrock_client, query, reranked_results)
|
328 |
+
st.write("**Answer using Re-ranked Retrieval:**")
|
329 |
+
st.success(reranked_answer)
|
330 |
+
|
331 |
+
st.write("---")
|
332 |
+
st.subheader("π Comparison Summary")
|
333 |
+
st.write("**Simple Retrieval:** Uses only vector similarity to find relevant documents.")
|
334 |
+
st.write("**Re-ranked Retrieval:** Uses Claude 3.5 to intelligently reorder results for better relevance.")
|
335 |
+
|
336 |
+
except Exception as e:
|
337 |
+
st.error(f"β Error during retrieval: {str(e)}")
|
338 |
+
|
339 |
+
# Reset button
|
340 |
+
if st.button("π Reset Setup"):
|
341 |
+
st.session_state.collection = None
|
342 |
+
st.session_state.setup_done = False
|
343 |
+
st.rerun()
|
344 |
|
345 |
+
# Installation guide
|
346 |
+
def show_installation_guide():
|
347 |
+
with st.expander("π Installation Guide"):
|
348 |
+
st.markdown("""
|
349 |
+
**Step 1: Install Required Libraries**
|
350 |
+
```bash
|
351 |
+
pip install streamlit boto3 chromadb datasets
|
352 |
+
```
|
353 |
+
|
354 |
+
**Step 2: Set up AWS**
|
355 |
+
```bash
|
356 |
+
aws configure
|
357 |
+
```
|
358 |
+
Enter your AWS access keys when prompted.
|
359 |
+
|
360 |
+
**Step 3: Run the App**
|
361 |
+
```bash
|
362 |
+
streamlit run reranking_app.py
|
363 |
+
```
|
364 |
+
|
365 |
+
**What this app does:**
|
366 |
+
1. Loads 100 Wikipedia documents
|
367 |
+
2. Splits them into 500-character chunks
|
368 |
+
3. Creates embeddings using Bedrock Titan
|
369 |
+
4. Stores in local ChromaDB
|
370 |
+
5. Compares simple vs re-ranked retrieval
|
371 |
+
""")
|
372 |
|
373 |
+
# Run the app
|
374 |
if __name__ == "__main__":
|
375 |
+
show_installation_guide()
|
376 |
+
main()
|
requirements.txt
CHANGED
@@ -1 +1,10 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
qdrant_client
|
3 |
+
streamlit
|
4 |
+
boto3
|
5 |
+
PyPDF2
|
6 |
+
chromadb
|
7 |
+
datasets
|
8 |
+
|
9 |
+
streamlit
|
10 |
+
boto3
|