Spaces:
Running
on
Zero
Running
on
Zero
Try out dropdown menus
Browse files- app.py +37 -31
- back_app.py +154 -0
app.py
CHANGED
@@ -1,18 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo"
|
11 |
|
12 |
-
if torch.cuda.is_available()
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
pipe = pipe.to(device)
|
@@ -20,10 +17,10 @@ pipe = pipe.to(device)
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
|
|
|
27 |
negative_prompt,
|
28 |
seed,
|
29 |
randomize_seed,
|
@@ -38,6 +35,9 @@ def infer(
|
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
|
|
|
|
|
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
@@ -50,13 +50,6 @@ def infer(
|
|
50 |
|
51 |
return image, seed
|
52 |
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
@@ -66,18 +59,22 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio
|
70 |
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
label="
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
-
|
81 |
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
@@ -105,7 +102,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024,
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,7 +110,7 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024,
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
@@ -122,7 +119,7 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=0.0,
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
@@ -130,15 +127,24 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=2,
|
134 |
)
|
135 |
|
136 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
gr.on(
|
138 |
-
triggers=[run_button.click
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
-
|
|
|
142 |
negative_prompt,
|
143 |
seed,
|
144 |
randomize_seed,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
# import spaces # Uncomment if using ZeroGPU
|
5 |
|
|
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo"
|
11 |
|
12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
|
|
13 |
|
14 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
pipe = pipe.to(device)
|
|
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 1024
|
19 |
|
20 |
+
# @spaces.GPU # Uncomment if using ZeroGPU
|
|
|
21 |
def infer(
|
22 |
+
environment,
|
23 |
+
pose,
|
24 |
negative_prompt,
|
25 |
seed,
|
26 |
randomize_seed,
|
|
|
35 |
|
36 |
generator = torch.Generator().manual_seed(seed)
|
37 |
|
38 |
+
# Construct prompt from dropdown selections
|
39 |
+
prompt = f"A person {pose.lower()} in a {environment.lower()}, detailed, 8k"
|
40 |
+
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
|
|
50 |
|
51 |
return image, seed
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
css = """
|
54 |
#col-container {
|
55 |
margin: 0 auto;
|
|
|
59 |
|
60 |
with gr.Blocks(css=css) as demo:
|
61 |
with gr.Column(elem_id="col-container"):
|
62 |
+
gr.Markdown(" # Text-to-Image Gradio with Controlled Prompt")
|
63 |
|
64 |
with gr.Row():
|
65 |
+
environment = gr.Dropdown(
|
66 |
+
label="Environment",
|
67 |
+
choices=["Jungle", "Desert", "Space Station", "Underwater", "Urban City"],
|
68 |
+
value="Jungle",
|
69 |
+
)
|
70 |
+
|
71 |
+
pose = gr.Dropdown(
|
72 |
+
label="Pose",
|
73 |
+
choices=["Standing", "Sitting", "Running", "Flying", "Lying Down"],
|
74 |
+
value="Standing",
|
75 |
)
|
76 |
|
77 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
78 |
|
79 |
result = gr.Image(label="Result", show_label=False)
|
80 |
|
|
|
102 |
minimum=256,
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
+
value=1024,
|
106 |
)
|
107 |
|
108 |
height = gr.Slider(
|
|
|
110 |
minimum=256,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
+
value=1024,
|
114 |
)
|
115 |
|
116 |
with gr.Row():
|
|
|
119 |
minimum=0.0,
|
120 |
maximum=10.0,
|
121 |
step=0.1,
|
122 |
+
value=0.0,
|
123 |
)
|
124 |
|
125 |
num_inference_steps = gr.Slider(
|
|
|
127 |
minimum=1,
|
128 |
maximum=50,
|
129 |
step=1,
|
130 |
+
value=2,
|
131 |
)
|
132 |
|
133 |
+
gr.Examples(
|
134 |
+
examples=[
|
135 |
+
["Jungle", "Running"],
|
136 |
+
["Space Station", "Flying"],
|
137 |
+
["Urban City", "Sitting"],
|
138 |
+
],
|
139 |
+
inputs=[environment, pose],
|
140 |
+
)
|
141 |
+
|
142 |
gr.on(
|
143 |
+
triggers=[run_button.click],
|
144 |
fn=infer,
|
145 |
inputs=[
|
146 |
+
environment,
|
147 |
+
pose,
|
148 |
negative_prompt,
|
149 |
seed,
|
150 |
randomize_seed,
|
back_app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
|
5 |
+
# import spaces #[uncomment to use ZeroGPU]
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import torch
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
+
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
torch_dtype = torch.float16
|
14 |
+
else:
|
15 |
+
torch_dtype = torch.float32
|
16 |
+
|
17 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
+
pipe = pipe.to(device)
|
19 |
+
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
MAX_IMAGE_SIZE = 1024
|
22 |
+
|
23 |
+
|
24 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
+
def infer(
|
26 |
+
prompt,
|
27 |
+
negative_prompt,
|
28 |
+
seed,
|
29 |
+
randomize_seed,
|
30 |
+
width,
|
31 |
+
height,
|
32 |
+
guidance_scale,
|
33 |
+
num_inference_steps,
|
34 |
+
progress=gr.Progress(track_tqdm=True),
|
35 |
+
):
|
36 |
+
if randomize_seed:
|
37 |
+
seed = random.randint(0, MAX_SEED)
|
38 |
+
|
39 |
+
generator = torch.Generator().manual_seed(seed)
|
40 |
+
|
41 |
+
image = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
negative_prompt=negative_prompt,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
width=width,
|
47 |
+
height=height,
|
48 |
+
generator=generator,
|
49 |
+
).images[0]
|
50 |
+
|
51 |
+
return image, seed
|
52 |
+
|
53 |
+
|
54 |
+
examples = [
|
55 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
+
"An astronaut riding a green horse",
|
57 |
+
"A delicious ceviche cheesecake slice",
|
58 |
+
]
|
59 |
+
|
60 |
+
css = """
|
61 |
+
#col-container {
|
62 |
+
margin: 0 auto;
|
63 |
+
max-width: 640px;
|
64 |
+
}
|
65 |
+
"""
|
66 |
+
|
67 |
+
with gr.Blocks(css=css) as demo:
|
68 |
+
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
prompt = gr.Text(
|
73 |
+
label="Prompt",
|
74 |
+
show_label=False,
|
75 |
+
max_lines=1,
|
76 |
+
placeholder="Enter your prompt",
|
77 |
+
container=False,
|
78 |
+
)
|
79 |
+
|
80 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
+
|
82 |
+
result = gr.Image(label="Result", show_label=False)
|
83 |
+
|
84 |
+
with gr.Accordion("Advanced Settings", open=False):
|
85 |
+
negative_prompt = gr.Text(
|
86 |
+
label="Negative prompt",
|
87 |
+
max_lines=1,
|
88 |
+
placeholder="Enter a negative prompt",
|
89 |
+
visible=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
seed = gr.Slider(
|
93 |
+
label="Seed",
|
94 |
+
minimum=0,
|
95 |
+
maximum=MAX_SEED,
|
96 |
+
step=1,
|
97 |
+
value=0,
|
98 |
+
)
|
99 |
+
|
100 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
width = gr.Slider(
|
104 |
+
label="Width",
|
105 |
+
minimum=256,
|
106 |
+
maximum=MAX_IMAGE_SIZE,
|
107 |
+
step=32,
|
108 |
+
value=1024, # Replace with defaults that work for your model
|
109 |
+
)
|
110 |
+
|
111 |
+
height = gr.Slider(
|
112 |
+
label="Height",
|
113 |
+
minimum=256,
|
114 |
+
maximum=MAX_IMAGE_SIZE,
|
115 |
+
step=32,
|
116 |
+
value=1024, # Replace with defaults that work for your model
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
guidance_scale = gr.Slider(
|
121 |
+
label="Guidance scale",
|
122 |
+
minimum=0.0,
|
123 |
+
maximum=10.0,
|
124 |
+
step=0.1,
|
125 |
+
value=0.0, # Replace with defaults that work for your model
|
126 |
+
)
|
127 |
+
|
128 |
+
num_inference_steps = gr.Slider(
|
129 |
+
label="Number of inference steps",
|
130 |
+
minimum=1,
|
131 |
+
maximum=50,
|
132 |
+
step=1,
|
133 |
+
value=2, # Replace with defaults that work for your model
|
134 |
+
)
|
135 |
+
|
136 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
+
gr.on(
|
138 |
+
triggers=[run_button.click, prompt.submit],
|
139 |
+
fn=infer,
|
140 |
+
inputs=[
|
141 |
+
prompt,
|
142 |
+
negative_prompt,
|
143 |
+
seed,
|
144 |
+
randomize_seed,
|
145 |
+
width,
|
146 |
+
height,
|
147 |
+
guidance_scale,
|
148 |
+
num_inference_steps,
|
149 |
+
],
|
150 |
+
outputs=[result, seed],
|
151 |
+
)
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
demo.launch()
|