DarianT commited on
Commit
53cc37d
·
1 Parent(s): cad2ec9

Try out dropdown menus

Browse files
Files changed (2) hide show
  1. app.py +37 -31
  2. back_app.py +154 -0
app.py CHANGED
@@ -1,18 +1,15 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
  pipe = pipe.to(device)
@@ -20,10 +17,10 @@ pipe = pipe.to(device)
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
- prompt,
 
27
  negative_prompt,
28
  seed,
29
  randomize_seed,
@@ -38,6 +35,9 @@ def infer(
38
 
39
  generator = torch.Generator().manual_seed(seed)
40
 
 
 
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
@@ -50,13 +50,6 @@ def infer(
50
 
51
  return image, seed
52
 
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
@@ -66,18 +59,22 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
 
 
 
 
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
@@ -105,7 +102,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,7 +110,7 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
@@ -122,7 +119,7 @@ with gr.Blocks(css=css) as demo:
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,15 +127,24 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
 
 
 
 
 
 
 
 
137
  gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
  inputs=[
141
- prompt,
 
142
  negative_prompt,
143
  seed,
144
  randomize_seed,
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ # import spaces # Uncomment if using ZeroGPU
5
 
 
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "stabilityai/sdxl-turbo"
11
 
12
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
 
13
 
14
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
15
  pipe = pipe.to(device)
 
17
  MAX_SEED = np.iinfo(np.int32).max
18
  MAX_IMAGE_SIZE = 1024
19
 
20
+ # @spaces.GPU # Uncomment if using ZeroGPU
 
21
  def infer(
22
+ environment,
23
+ pose,
24
  negative_prompt,
25
  seed,
26
  randomize_seed,
 
35
 
36
  generator = torch.Generator().manual_seed(seed)
37
 
38
+ # Construct prompt from dropdown selections
39
+ prompt = f"A person {pose.lower()} in a {environment.lower()}, detailed, 8k"
40
+
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
 
50
 
51
  return image, seed
52
 
 
 
 
 
 
 
 
53
  css = """
54
  #col-container {
55
  margin: 0 auto;
 
59
 
60
  with gr.Blocks(css=css) as demo:
61
  with gr.Column(elem_id="col-container"):
62
+ gr.Markdown(" # Text-to-Image Gradio with Controlled Prompt")
63
 
64
  with gr.Row():
65
+ environment = gr.Dropdown(
66
+ label="Environment",
67
+ choices=["Jungle", "Desert", "Space Station", "Underwater", "Urban City"],
68
+ value="Jungle",
69
+ )
70
+
71
+ pose = gr.Dropdown(
72
+ label="Pose",
73
+ choices=["Standing", "Sitting", "Running", "Flying", "Lying Down"],
74
+ value="Standing",
75
  )
76
 
77
+ run_button = gr.Button("Run", scale=0, variant="primary")
78
 
79
  result = gr.Image(label="Result", show_label=False)
80
 
 
102
  minimum=256,
103
  maximum=MAX_IMAGE_SIZE,
104
  step=32,
105
+ value=1024,
106
  )
107
 
108
  height = gr.Slider(
 
110
  minimum=256,
111
  maximum=MAX_IMAGE_SIZE,
112
  step=32,
113
+ value=1024,
114
  )
115
 
116
  with gr.Row():
 
119
  minimum=0.0,
120
  maximum=10.0,
121
  step=0.1,
122
+ value=0.0,
123
  )
124
 
125
  num_inference_steps = gr.Slider(
 
127
  minimum=1,
128
  maximum=50,
129
  step=1,
130
+ value=2,
131
  )
132
 
133
+ gr.Examples(
134
+ examples=[
135
+ ["Jungle", "Running"],
136
+ ["Space Station", "Flying"],
137
+ ["Urban City", "Sitting"],
138
+ ],
139
+ inputs=[environment, pose],
140
+ )
141
+
142
  gr.on(
143
+ triggers=[run_button.click],
144
  fn=infer,
145
  inputs=[
146
+ environment,
147
+ pose,
148
  negative_prompt,
149
  seed,
150
  randomize_seed,
back_app.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+
5
+ # import spaces #[uncomment to use ZeroGPU]
6
+ from diffusers import DiffusionPipeline
7
+ import torch
8
+
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
+
12
+ if torch.cuda.is_available():
13
+ torch_dtype = torch.float16
14
+ else:
15
+ torch_dtype = torch.float32
16
+
17
+ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
+ pipe = pipe.to(device)
19
+
20
+ MAX_SEED = np.iinfo(np.int32).max
21
+ MAX_IMAGE_SIZE = 1024
22
+
23
+
24
+ # @spaces.GPU #[uncomment to use ZeroGPU]
25
+ def infer(
26
+ prompt,
27
+ negative_prompt,
28
+ seed,
29
+ randomize_seed,
30
+ width,
31
+ height,
32
+ guidance_scale,
33
+ num_inference_steps,
34
+ progress=gr.Progress(track_tqdm=True),
35
+ ):
36
+ if randomize_seed:
37
+ seed = random.randint(0, MAX_SEED)
38
+
39
+ generator = torch.Generator().manual_seed(seed)
40
+
41
+ image = pipe(
42
+ prompt=prompt,
43
+ negative_prompt=negative_prompt,
44
+ guidance_scale=guidance_scale,
45
+ num_inference_steps=num_inference_steps,
46
+ width=width,
47
+ height=height,
48
+ generator=generator,
49
+ ).images[0]
50
+
51
+ return image, seed
52
+
53
+
54
+ examples = [
55
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
+ "An astronaut riding a green horse",
57
+ "A delicious ceviche cheesecake slice",
58
+ ]
59
+
60
+ css = """
61
+ #col-container {
62
+ margin: 0 auto;
63
+ max-width: 640px;
64
+ }
65
+ """
66
+
67
+ with gr.Blocks(css=css) as demo:
68
+ with gr.Column(elem_id="col-container"):
69
+ gr.Markdown(" # Text-to-Image Gradio Template")
70
+
71
+ with gr.Row():
72
+ prompt = gr.Text(
73
+ label="Prompt",
74
+ show_label=False,
75
+ max_lines=1,
76
+ placeholder="Enter your prompt",
77
+ container=False,
78
+ )
79
+
80
+ run_button = gr.Button("Run", scale=0, variant="primary")
81
+
82
+ result = gr.Image(label="Result", show_label=False)
83
+
84
+ with gr.Accordion("Advanced Settings", open=False):
85
+ negative_prompt = gr.Text(
86
+ label="Negative prompt",
87
+ max_lines=1,
88
+ placeholder="Enter a negative prompt",
89
+ visible=False,
90
+ )
91
+
92
+ seed = gr.Slider(
93
+ label="Seed",
94
+ minimum=0,
95
+ maximum=MAX_SEED,
96
+ step=1,
97
+ value=0,
98
+ )
99
+
100
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
+ with gr.Row():
103
+ width = gr.Slider(
104
+ label="Width",
105
+ minimum=256,
106
+ maximum=MAX_IMAGE_SIZE,
107
+ step=32,
108
+ value=1024, # Replace with defaults that work for your model
109
+ )
110
+
111
+ height = gr.Slider(
112
+ label="Height",
113
+ minimum=256,
114
+ maximum=MAX_IMAGE_SIZE,
115
+ step=32,
116
+ value=1024, # Replace with defaults that work for your model
117
+ )
118
+
119
+ with gr.Row():
120
+ guidance_scale = gr.Slider(
121
+ label="Guidance scale",
122
+ minimum=0.0,
123
+ maximum=10.0,
124
+ step=0.1,
125
+ value=0.0, # Replace with defaults that work for your model
126
+ )
127
+
128
+ num_inference_steps = gr.Slider(
129
+ label="Number of inference steps",
130
+ minimum=1,
131
+ maximum=50,
132
+ step=1,
133
+ value=2, # Replace with defaults that work for your model
134
+ )
135
+
136
+ gr.Examples(examples=examples, inputs=[prompt])
137
+ gr.on(
138
+ triggers=[run_button.click, prompt.submit],
139
+ fn=infer,
140
+ inputs=[
141
+ prompt,
142
+ negative_prompt,
143
+ seed,
144
+ randomize_seed,
145
+ width,
146
+ height,
147
+ guidance_scale,
148
+ num_inference_steps,
149
+ ],
150
+ outputs=[result, seed],
151
+ )
152
+
153
+ if __name__ == "__main__":
154
+ demo.launch()