import logging import speech_recognition as sr from pydub import AudioSegment from io import BytesIO logging.basicConfig(level=logging.INFO , format='%(asctime)s - %(levelname)s - %(message)s') def record_audio(file_path , duration=20 , phrase_time_limit= None): recognizer = sr.Recognizer() try: with sr.Microphone() as source: logging.info("Adjusting for ambient noise...") recognizer.adjust_for_ambient_noise(source) logging.info("Recording audio...") # Record the audio audio_data = recognizer.listen(source , timeout=duration , phrase_time_limit=phrase_time_limit) logging.info("Recording complete.") # Convert the recorded audio to an MP3 file audio_waves = audio_data.get_wav_data() audio_segments = AudioSegment.from_wav(BytesIO(audio_waves)) audio_segments.export(file_path , format="mp3" , bitrate="128k") logging.info(f"Audio saved to {file_path}.") except Exception as e: logging.error(f"An error occurred while recording audio: {e}") audio_filePath = "patient_voice.mp3" record_audio(file_path= audio_filePath) import os from groq import Groq from dotenv import load_dotenv load_dotenv() GROQ_API_KEY = os.getenv("GROQ_API_KEY") sst_model = "whisper-large-v3" def transcription_with_groq(audio_filePath , sst_model , GROQ_API_KEY): try: groq_client = Groq(api_key = GROQ_API_KEY) audio_file = open(audio_filePath , "rb") transcription = groq_client.audio.transcriptions.create( model = sst_model, file = audio_file, language = "en" ) logging.info("Transcription complete.") print(transcription.text) return transcription.text except Exception as e: logging.error(f"An error occurred during transcription: {e}") transcription_with_groq(audio_filePath=audio_filePath , sst_model=sst_model,GROQ_API_KEY=GROQ_API_KEY)