Spaces:
Running
Running
| import logging | |
| import speech_recognition as sr | |
| from pydub import AudioSegment | |
| from io import BytesIO | |
| logging.basicConfig(level=logging.INFO , format='%(asctime)s - %(levelname)s - %(message)s') | |
| def record_audio(file_path , duration=20 , phrase_time_limit= None): | |
| recognizer = sr.Recognizer() | |
| try: | |
| with sr.Microphone() as source: | |
| logging.info("Adjusting for ambient noise...") | |
| recognizer.adjust_for_ambient_noise(source) | |
| logging.info("Recording audio...") | |
| # Record the audio | |
| audio_data = recognizer.listen(source , timeout=duration , phrase_time_limit=phrase_time_limit) | |
| logging.info("Recording complete.") | |
| # Convert the recorded audio to an MP3 file | |
| audio_waves = audio_data.get_wav_data() | |
| audio_segments = AudioSegment.from_wav(BytesIO(audio_waves)) | |
| audio_segments.export(file_path , format="mp3" , bitrate="128k") | |
| logging.info(f"Audio saved to {file_path}.") | |
| except Exception as e: | |
| logging.error(f"An error occurred while recording audio: {e}") | |
| audio_filePath = "patient_voice.mp3" | |
| record_audio(file_path= audio_filePath) | |
| import os | |
| from groq import Groq | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
| sst_model = "whisper-large-v3" | |
| def transcription_with_groq(audio_filePath , sst_model , GROQ_API_KEY): | |
| try: | |
| groq_client = Groq(api_key = GROQ_API_KEY) | |
| audio_file = open(audio_filePath , "rb") | |
| transcription = groq_client.audio.transcriptions.create( | |
| model = sst_model, | |
| file = audio_file, | |
| language = "en" | |
| ) | |
| logging.info("Transcription complete.") | |
| print(transcription.text) | |
| return transcription.text | |
| except Exception as e: | |
| logging.error(f"An error occurred during transcription: {e}") | |
| transcription_with_groq(audio_filePath=audio_filePath , sst_model=sst_model,GROQ_API_KEY=GROQ_API_KEY) |