Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +95 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,97 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import asyncio
|
3 |
+
from crawl4ai import AsyncWebCrawler
|
4 |
+
from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig
|
5 |
+
from langchain_core.documents.base import Document
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores.chroma import Chroma
|
9 |
+
from langchain_huggingface.chat_models import ChatHuggingFace
|
10 |
+
from langchain_huggingface.llms import HuggingFaceEndpoint
|
11 |
+
import os
|
12 |
|
13 |
+
# ------------------------------------------------------------------------------
|
14 |
+
# Set your API tokens
|
15 |
+
# ------------------------------------------------------------------------------
|
16 |
+
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.getenv("key")
|
17 |
+
os.environ['HF_TOKEN'] = os.getenv("key")
|
18 |
+
|
19 |
+
|
20 |
+
# ------------------------------------------------------------------------------
|
21 |
+
# Streamlit App
|
22 |
+
# ------------------------------------------------------------------------------
|
23 |
+
st.title("Web Crawler + Semantic Search + Conversational Model")
|
24 |
+
|
25 |
+
# Input for the website to crawl
|
26 |
+
url = st.text_input("Enter a website URL to crawl:")
|
27 |
+
|
28 |
+
# Input for semantic search
|
29 |
+
query = st.text_input("Enter your semantic search query:")
|
30 |
+
|
31 |
+
|
32 |
+
# Button to start the process
|
33 |
+
if st.button("Analyze and Query"):
|
34 |
+
|
35 |
+
if not url or not query:
|
36 |
+
st.error("Please provide both a URL and a semantic search query.")
|
37 |
+
else:
|
38 |
+
with st.spinner("Crawling website, retrieving documents, and generating a response..."):
|
39 |
+
|
40 |
+
async def main():
|
41 |
+
# Crawling
|
42 |
+
browser_config = BrowserConfig()
|
43 |
+
run_config = CrawlerRunConfig()
|
44 |
+
|
45 |
+
async with AsyncWebCrawler(config=browser_config) as crawler:
|
46 |
+
result = await crawler.arun(url=url, config=run_config)
|
47 |
+
doc = Document(page_content=result.markdown.raw_markdown)
|
48 |
+
|
49 |
+
# Split documents into chunks
|
50 |
+
text_splitter = CharacterTextSplitter(
|
51 |
+
chunk_size=1000,
|
52 |
+
chunk_overlap=100,
|
53 |
+
)
|
54 |
+
|
55 |
+
chunks = text_splitter.split_documents([doc])
|
56 |
+
|
57 |
+
# Embedding and Vector Store
|
58 |
+
emb = HuggingFaceEmbeddings(model='avsolatorio/GIST-small-Embedding-v0')
|
59 |
+
db = Chroma.from_documents(chunks, emb, persist_directory='chroma_db')
|
60 |
+
|
61 |
+
docs = db.similarity_search(query, k=3)
|
62 |
+
|
63 |
+
context = " ".join([d.page_content for d in docs])
|
64 |
+
|
65 |
+
# Prepare and call the chat model
|
66 |
+
deepseek_endpoint = HuggingFaceEndpoint(
|
67 |
+
repo_id='deepseek-ai/DeepSeek-Prover-V2-671B',
|
68 |
+
provider='sambanova',
|
69 |
+
temperature=0.5,
|
70 |
+
max_new_tokens=50,
|
71 |
+
task='conversational'
|
72 |
+
)
|
73 |
+
|
74 |
+
deep_seek = ChatHuggingFace(
|
75 |
+
llm=deepseek_endpoint,
|
76 |
+
repo_id='deepseek-ai/DeepSeek-Prover-V2-671B',
|
77 |
+
provider='sambanova',
|
78 |
+
temperature=0.5,
|
79 |
+
max_new_tokens=50,
|
80 |
+
task='conversational'
|
81 |
+
)
|
82 |
+
|
83 |
+
message = f"""Context:\n{context}\nQuestion:\n{query}"""
|
84 |
+
response = deep_seek.invoke([{"role": "user", "content": message}])
|
85 |
+
|
86 |
+
return response.content
|
87 |
+
|
88 |
+
response = asyncio.run(main())
|
89 |
+
|
90 |
+
st.success("Done.")
|
91 |
+
st.write("**Response from Model:**")
|
92 |
+
st.write(response)
|
93 |
+
|
94 |
+
|
95 |
+
# ------------------------------------------------------------------------------
|
96 |
+
# End of Streamlit App
|
97 |
+
# ------------------------------------------------------------------------------
|