CultriX's picture
Update app.py
763898d verified
raw
history blame
19.5 kB
import os
import asyncio
import logging
import threading
import queue
import gradio as gr
import httpx
from typing import Generator, Any, Dict, List, Optional
from functools import lru_cache
# -------------------- Configuration --------------------
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# -------------------- External Model Call (with Caching and Retry) --------------------
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None, max_retries: int = 3) -> str:
"""
Sends a prompt to the OpenAI API endpoint with retries and exponential backoff.
"""
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
if api_key is None:
raise ValueError("OpenAI API key not found.")
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
payload = {"model": model, "messages": [{"role": "user", "content": prompt}]}
for attempt in range(max_retries):
try:
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
response = await client.post(url, headers=headers, json=payload)
response.raise_for_status()
response_json = response.json() # Synchronous parsing is acceptable here
return response_json["choices"][0]["message"]["content"]
except httpx.HTTPStatusError as e:
logging.error(f"HTTP error (attempt {attempt + 1}/{max_retries}): {e}")
if e.response.status_code in (502, 503, 504):
await asyncio.sleep(2 ** attempt)
continue
else:
raise
except httpx.RequestError as e:
logging.error(f"Request error (attempt {attempt + 1}/{max_retries}): {e}")
await asyncio.sleep(2 ** attempt)
continue
except Exception as e:
logging.error(f"Unexpected error (attempt {attempt+1}/{max_retries}): {e}")
raise
raise Exception(f"Failed to get response from OpenAI API after {max_retries} attempts.")
# -------------------- Shared Context --------------------
class Context:
def __init__(self, original_task: str, optimized_task: Optional[str] = None,
plan: Optional[str] = None, code: Optional[str] = None,
review_comments: Optional[List[Dict[str, str]]] = None,
test_cases: Optional[str] = None, test_results: Optional[str] = None,
documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
self.original_task = original_task
self.optimized_task = optimized_task
self.plan = plan
self.code = code
self.review_comments = review_comments or []
self.test_cases = test_cases
self.test_results = test_results
self.documentation = documentation
self.conversation_history = conversation_history or []
def add_conversation_entry(self, agent_name: str, message: str):
self.conversation_history.append({"agent": agent_name, "message": message})
# -------------------- Agent Classes --------------------
class PromptOptimizerAgent:
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
"""
Optimizes the user’s original prompt.
"""
system_prompt = (
"Improve the prompt. Be clear, specific, and complete. "
"Keep original intent. Return ONLY the revised prompt."
)
full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
context.optimized_task = optimized
context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
return context
class OrchestratorAgent:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue) -> None:
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
async def generate_plan(self, context: Context, api_key: str) -> Context:
"""
Generates (or revises) a plan using human feedback if necessary.
Uses an iterative approach instead of recursion.
"""
while True:
if context.plan:
prompt = (
f"You are a planner. Revise/complete the plan for '{context.original_task}' using feedback:\n"
f"{context.plan}\n\n"
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
else:
prompt = (
f"You are a planner. Create a plan for: '{context.optimized_task}'. "
"Break down the task and assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
"Include review/revision steps, error handling, and documentation instructions.\n\n"
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
# Check if human feedback is requested.
if "REQUEST_HUMAN_FEEDBACK" in plan:
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
self.log_queue.put(f"[Orchestrator]: Question for human: {question}")
# Prepare feedback context and trigger the human feedback event.
feedback_request_context = (
f"The orchestrator agent is requesting feedback on the following task:\n"
f"**{context.optimized_task}**\n\n"
f"Current plan:\n**{context.plan or 'None'}**\n\n"
f"Question:\n**{question}**"
)
self.human_event.set()
# Pass the context to the human input handler.
self.human_input_queue.put(feedback_request_context)
human_response = self.human_input_queue.get() # Blocking call for human response.
self.human_event.clear()
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
# Incorporate human feedback into the plan and loop again.
context.plan = context.plan + "\n" + human_response if context.plan else human_response
else:
context.plan = plan
break # Exit loop when no feedback is requested.
return context
class CoderAgent:
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
"""
Generates code based on the provided plan.
"""
prompt = (
"You are a coding agent. Output ONLY the code. "
"Adhere to best practices and include error handling.\n\n"
f"Instructions:\n{context.plan}"
)
code = await call_model(prompt, model=model, api_key=api_key)
context.code = code
context.add_conversation_entry("Coder", f"Code:\n{code}")
return context
class CodeReviewerAgent:
async def review_code(self, context: Context, api_key: str) -> Context:
"""
Reviews the generated code and returns either actionable feedback or 'APPROVE'.
"""
prompt = (
"You are a code reviewer. Provide CONCISE feedback focusing on correctness, efficiency, readability, error handling, and security. "
"If the code is acceptable, respond with ONLY 'APPROVE'. Do NOT generate code.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
# Check for approval; if not approved, parse feedback.
if "APPROVE" not in review.upper():
structured_review = {"comments": []}
for line in review.splitlines():
if line.strip():
structured_review["comments"].append({
"issue": line.strip(),
"line_number": "N/A",
"severity": "Medium"
})
context.review_comments.append(structured_review)
return context
class QualityAssuranceTesterAgent:
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
"""
Generates test cases considering edge and error cases.
"""
prompt = (
"You are a testing agent. Generate comprehensive test cases considering edge cases and error scenarios. "
"Output in a clear format.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_cases = test_cases
context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
return context
async def run_tests(self, context: Context, api_key: str) -> Context:
"""
Runs the generated test cases and compares expected vs. actual outcomes.
"""
prompt = (
"Run the test cases. Compare actual vs expected outputs and state any discrepancies. "
"If all tests pass, output 'TESTS PASSED'.\n\n"
f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
)
test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_results = test_results
context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
return context
class DocumentationAgent:
async def generate_documentation(self, context: Context, api_key: str) -> Context:
"""
Generates concise documentation including a --help message.
"""
prompt = (
"Generate clear documentation including a brief description, explanation, and a --help message.\n\n"
f"Code:\n{context.code}"
)
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.documentation = documentation
context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
return context
# -------------------- Agent Dispatcher --------------------
class AgentDispatcher:
def __init__(self, log_queue: queue.Queue, human_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_event = human_event
self.human_input_queue = human_input_queue
self.agents = {
"prompt_optimizer": PromptOptimizerAgent(),
"orchestrator": OrchestratorAgent(log_queue, human_event, human_input_queue),
"coder": CoderAgent(),
"code_reviewer": CodeReviewerAgent(),
"qa_tester": QualityAssuranceTesterAgent(),
"documentation_agent": DocumentationAgent(),
}
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
"""
Dispatches the task to the specified agent.
"""
agent = self.agents.get(agent_name)
if not agent:
raise ValueError(f"Unknown agent: {agent_name}")
self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...")
if agent_name == "prompt_optimizer":
context = await agent.optimize_prompt(context, api_key)
elif agent_name == "orchestrator":
context = await agent.generate_plan(context, api_key)
elif agent_name == "coder":
context = await agent.generate_code(context, api_key, **kwargs)
elif agent_name == "code_reviewer":
context = await agent.review_code(context, api_key)
elif agent_name == "qa_tester":
if kwargs.get("generate_tests", False):
context = await agent.generate_test_cases(context, api_key)
elif kwargs.get("run_tests", False):
context = await agent.run_tests(context, api_key)
elif agent_name == "documentation_agent":
context = await agent.generate_documentation(context, api_key)
else:
raise ValueError(f"Unknown Agent Name: {agent_name}")
return context
async def determine_next_agent(self, context: Context, api_key: str) -> str:
"""
Determines the next agent to run based on the current context.
"""
if not context.optimized_task:
return "prompt_optimizer"
if not context.plan:
return "orchestrator"
if not context.code:
return "coder"
# Check if any review comment lacks an APPROVE.
if not any(
"APPROVE" in comment.get("issue", "").upper()
for review in context.review_comments
for comment in review.get("comments", [])
):
return "code_reviewer"
if not context.test_cases:
return "qa_tester"
if not context.test_results or "TESTS PASSED" not in context.test_results.upper():
return "qa_tester"
if not context.documentation:
return "documentation_agent"
return "done" # All tasks are complete
# -------------------- Multi-Agent Conversation --------------------
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue) -> None:
"""
Orchestrates the multi-agent conversation.
"""
context = Context(original_task=task_message)
dispatcher = AgentDispatcher(log_queue, human_event, human_input_queue)
next_agent = await dispatcher.determine_next_agent(context, api_key)
# Prevent endless revisions by tracking coder iterations.
coder_iterations = 0
while next_agent != "done":
if next_agent == "qa_tester":
if not context.test_cases:
context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
else:
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
elif next_agent == "coder" and (context.review_comments or context.test_results):
coder_iterations += 1
# Switch to a different model after the first iteration.
context = await dispatcher.dispatch(next_agent, context, api_key, model="gpt-3.5-turbo-16k")
else:
context = await dispatcher.dispatch(next_agent, context, api_key)
# Check for approval in code review if applicable.
if next_agent == "code_reviewer":
approved = any(
"APPROVE" in comment.get("issue", "").upper()
for review in context.review_comments
for comment in review.get("comments", [])
)
if not approved:
# If not approved, we continue with coder to improve the code.
next_agent = "coder"
else:
next_agent = await dispatcher.determine_next_agent(context, api_key)
else:
next_agent = await dispatcher.determine_next_agent(context, api_key)
if next_agent == "coder" and coder_iterations > 5:
log_queue.put("Maximum revision iterations reached. Exiting.")
break
log_queue.put("Conversation complete.")
log_queue.put(("result", context.conversation_history))
# -------------------- Process Generator and Human Input --------------------
def process_conversation_generator(task_message: str, api_key: str,
human_event: threading.Event, human_input_queue: queue.Queue,
log_queue: queue.Queue) -> Generator[str, None, None]:
"""
Runs the conversation and yields log messages.
"""
# Run the conversation asynchronously.
asyncio.run(multi_agent_conversation(task_message, log_queue, api_key, human_event, human_input_queue))
final_result = None
while True:
try:
msg = log_queue.get_nowait()
if isinstance(msg, tuple) and msg[0] == "result":
final_result = msg[1]
yield gr.Chatbot.update(value=final_result, visible=True)
yield "Conversation complete."
break
else:
yield msg
except queue.Empty:
pass
# If human feedback is requested, yield an appropriate message.
if human_event.is_set():
yield "Waiting for human feedback..."
# Use a short asynchronous sleep to avoid busy-waiting.
asyncio.run(asyncio.sleep(0.1))
def get_human_feedback(placeholder_text: str, human_input_queue: queue.Queue) -> gr.Blocks:
"""
Constructs the Gradio interface to collect human feedback.
"""
with gr.Blocks() as human_feedback_interface:
with gr.Row():
human_input = gr.Textbox(lines=4, label="Human Feedback", placeholder=placeholder_text)
with gr.Row():
submit_button = gr.Button("Submit Feedback")
def submit_feedback(input_text: str):
human_input_queue.put(input_text)
return ""
submit_button.click(fn=submit_feedback, inputs=human_input, outputs=human_input)
return human_feedback_interface
# -------------------- Chat Function for Gradio --------------------
def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[Any, None, None]:
"""
Gradio chat function that runs the multi-agent conversation.
"""
if not openai_api_key:
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
yield "Error: API key not provided."
return
human_event = threading.Event()
human_input_queue = queue.Queue()
log_queue = queue.Queue()
yield from process_conversation_generator(message, openai_api_key, human_event, human_input_queue, log_queue)
# -------------------- Launch the Chatbot --------------------
iface = gr.ChatInterface(
fn=multi_agent_chat,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(label="OpenAI API Key (optional)", type="password", placeholder="Leave blank to use env variable")
],
title="Multi-Agent Task Solver with Human-in-the-Loop",
description=(
"- Collaborative workflow with Human-in-the-Loop.\n"
"- Orchestrator can ask for human feedback.\n"
"- Enter a task; agents will work on it. You may be prompted for input.\n"
"- Max 5 revisions.\n"
"- Provide API Key."
)
)
# Dummy interface to prevent Gradio errors.
dummy_iface = gr.Interface(lambda x: x, "textbox", "textbox")
if __name__ == "__main__":
demo = gr.TabbedInterface([iface, dummy_iface], ["Chatbot", "Dummy"])
demo.launch(share=True)