CosmoAI commited on
Commit
31794c3
·
1 Parent(s): f42fa3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -23
app.py CHANGED
@@ -1,24 +1,102 @@
1
  import streamlit as st
2
- from streamlit_option_menu import option_menu
3
-
4
-
5
- embed = """<iframe
6
- src="https://cosmoai-cosmos.hf.space"
7
- frameborder="0"
8
- width="850"
9
- height="450"
10
- ></iframe>
11
- """
12
- st.markdown(embed, unsafe_allow_html=True)
13
-
14
- # Create a nested streamlit-option-menu
15
- optons = [
16
- "Option 1",
17
- option_menu(
18
- "Sub Menu",
19
- options=["Option 2", "Option 3"]
20
- ),
21
- ]
22
-
23
- # Display the streamlit-option-menu
24
- option_menu("Main Menu", options = optons)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ # from langchain.chat_models import ChatOpenAI
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ from htmlTemplates import css, bot_template, user_template
11
+ from langchain.llms import HuggingFaceHub
12
+ import os
13
+ # from transformers import T5Tokenizer, T5ForConditionalGeneration
14
+ # from langchain.callbacks import get_openai_callback
15
+ hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
16
+
17
+ def split_pdfs(pdf_docs):
18
+ """Splits a list of PDF documents into smaller chunks.
19
+
20
+ Args:
21
+ pdf_docs: A list of PDF documents.
22
+
23
+ Returns:
24
+ A list of lists of PDF documents, where each sublist contains a smaller chunk of the original PDF documents.
25
+ """
26
+
27
+ pdf_chunks = []
28
+ for pdf_doc in pdf_docs:
29
+ # Split the PDF document into pages.
30
+ pdf_reader = PdfReader(pdf_doc)
31
+ pdf_pages = pdf_reader.pages
32
+
33
+ # Split the PDF pages into chunks.
34
+ pdf_chunks.append([])
35
+ for pdf_page in pdf_pages:
36
+ # Add the PDF page to the current chunk.
37
+ pdf_chunks[-1].append(pdf_page)
38
+
39
+ # If the chunk is too large, start a new chunk.
40
+ if len(pdf_chunks[-1]) >= 10:
41
+ pdf_chunks.append([])
42
+
43
+ return pdf_chunks
44
+
45
+ def generate_response(pdf_chunks, llm_model):
46
+ """Generates a response to a query using a list of PDF documents and an LLM model.
47
+
48
+ Args:
49
+ pdf_chunks: A list of lists of PDF documents, where each sublist contains a smaller chunk of the original PDF documents.
50
+ llm_model: An LLM model.
51
+
52
+ Returns:
53
+ A response to the query.
54
+ """
55
+
56
+ # Generate a summary of each PDF chunk.
57
+ pdf_summaries = []
58
+ for pdf_chunk in pdf_chunks:
59
+ # Generate a summary of the PDF chunk.
60
+ pdf_summary = llm_model.generate(
61
+ prompt=f"Summarize the following text:\n{get_pdf_text(pdf_chunk)}",
62
+ max_new_tokens=100
63
+ )
64
+
65
+ # Add the summary to the list of summaries.
66
+ pdf_summaries.append(pdf_summary)
67
+
68
+ # Generate a response to the query using the summaries of the PDF chunks.
69
+ response = llm_model.generate(
70
+ prompt=f"Answer the following question using the following summaries:\n{get_text_chunks(pdf_summaries)}\n\nQuestion:",
71
+ max_new_tokens=200
72
+ )
73
+
74
+ return response
75
+
76
+ def main():
77
+ load_dotenv()
78
+ st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
79
+ st.write(css, unsafe_allow_html=True)
80
+
81
+ # Load the LLM model.
82
+ llm_model = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token)
83
+
84
+ if "conversation" not in st.session_state:
85
+ st.session_state.conversation = None
86
+
87
+ if "chat_history" not in st.session_state:
88
+ st.session_state.chat_history = None
89
+
90
+ st.header("Chat with multiple PDFs :books:")
91
+ user_question = st.text_input("Ask a question about your documents:")
92
+
93
+ # If the user asked a question, generate a response.
94
+ if user_question:
95
+ # Split the PDF documents into smaller chunks.
96
+ pdf_chunks = split_pdfs(st.session_state.pdf_docs)
97
+
98
+ # Generate a response to the query.
99
+ response = generate_response(pdf_chunks, llm_model)
100
+
101
+ st.write(response)
102
+