Spaces:
Sleeping
Sleeping
import os | |
import faiss | |
import torch | |
import threading | |
import gradio as gr | |
from docx import Document | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
# === Configuration === | |
MODEL_ID = "microsoft/phi-2" | |
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
SYSTEM_PROMPT = """You are a friendly café assistant. Help customers place orders, check ingredients, and provide warm service.""" | |
# === Load LLM === | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID).to(DEVICE) | |
# === Load Embedder === | |
embedder = SentenceTransformer(EMBED_MODEL) | |
# === Load Menu Text === | |
def load_menu(docx_path): | |
doc = Document(docx_path) | |
return [p.text.strip() for p in doc.paragraphs if p.text.strip()] | |
menu_chunks = load_menu("menu.docx") | |
chunk_embeddings = embedder.encode(menu_chunks, convert_to_tensor=True).cpu().numpy() | |
# === Build FAISS Index === | |
dimension = chunk_embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(chunk_embeddings) | |
# === Retrieval === | |
def retrieve_context_faiss(query, top_k=3): | |
query_vec = embedder.encode([query]).astype("float32") | |
distances, indices = index.search(query_vec, top_k) | |
return "\n".join([menu_chunks[i] for i in indices[0]]) | |
# === Generate LLM Response === | |
def generate_response(message, history, system_message, max_tokens, temperature, top_p): | |
context = retrieve_context_faiss(message) | |
messages = [{"role": "system", "content": system_message}] | |
for user, bot in history: | |
messages.append({"role": "user", "content": user}) | |
messages.append({"role": "assistant", "content": bot}) | |
messages.append({"role": "user", "content": f"{message}\n\nRelevant info:\n{context}"}) | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
output = "" | |
for token in streamer: | |
output += token | |
yield output | |
# === UI === | |
demo = gr.ChatInterface( | |
fn=generate_response, | |
title="Café Eleven RAG Assistant", | |
description="LLM + FAISS powered café chatbot with real-time Word document lookup.", | |
examples=[ | |
["Do you have vegetarian options?", SYSTEM_PROMPT, 512, 0.7, 0.9], | |
["What's in the turkey sandwich?", SYSTEM_PROMPT, 512, 0.7, 0.9], | |
], | |
additional_inputs=[ | |
gr.Textbox(value=SYSTEM_PROMPT, label="System Prompt"), | |
gr.Slider(1, 1024, 512, label="Max Tokens"), | |
gr.Slider(0.1, 2.0, 0.7, label="Temperature"), | |
gr.Slider(0.1, 1.0, 0.9, label="Top-p"), | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |