from llama_index.core.agent.workflow import FunctionAgent from llama_index.core.tools import FunctionTool from llama_index.core import VectorStoreIndex, Document from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser from llama_index.core.postprocessor import SentenceTransformerRerank from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader import os from typing import List, Dict, Any from llama_index.tools.arxiv import ArxivToolSpec from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec import re from llama_index.core.agent.workflow import ReActAgent import wandb from llama_index.callbacks.wandb import WandbCallbackHandler from llama_index.core.callbacks.base import CallbackManager from llama_index.core.callbacks.llama_debug import LlamaDebugHandler from llama_index.core import Settings from transformers import AutoModelForCausalLM, AutoTokenizer from llama_index.llms.huggingface import HuggingFaceLLM import requests import logging from llama_index.core.workflow import Context from llama_index.core.agent.workflow import AgentStream from llama_index.readers_web import TrafilaturaWebReader from llama_index_readers_youtube_transcript import YoutubeTranscriptReader wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) llama_debug = LlamaDebugHandler(print_trace_on_end=True) # Comprehensive callback manager callback_manager = CallbackManager([ wandb_callback, # For W&B tracking llama_debug # For general debugging ]) logging.basicConfig(level=logging.INFO) logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG) logging.getLogger("llama_index.llms").setLevel(logging.DEBUG) model_id = "Qwen/Qwen2.5-7B-Instruct" proj_llm = HuggingFaceLLM( model_name=model_id, tokenizer_name=model_id, device_map="auto", # will use GPU if available model_kwargs={"torch_dtype": "auto"}, generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused ) embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5") wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) llama_debug = LlamaDebugHandler(print_trace_on_end=True) callback_manager = CallbackManager([wandb_callback, llama_debug]) Settings.llm = proj_llm Settings.embed_model = embed_model Settings.callback_manager = callback_manager import os from typing import List from urllib.parse import urlparse from llama_index.core.tools import FunctionTool from llama_index.core import Document # --- Import all required official LlamaIndex Readers --- from llama_index.readers.file import ( PDFReader, DocxReader, CSVReader, PandasExcelReader, ImageReader, ) from llama_index.readers.json import JSONReader from llama_index.readers.web import TrafilaturaWebReader from llama_index.readers.youtube_transcript import YoutubeTranscriptReader from llama_index.readers.audiotranscribe.openai import OpenAIAudioTranscriptReader def read_and_parse_content(input_path: str) -> List[Document]: """ Reads and parses content from a file path or URL into Document objects. It automatically detects the input type and uses the appropriate LlamaIndex reader. Args: input_path: A local file path or a web URL. Returns: A list of LlamaIndex Document objects with the extracted text. """ # --- Completed readers map for various local file types --- readers_map = { # Documents '.pdf': PDFReader(), '.docx': DocxReader(), '.doc': DocxReader(), # Data files '.csv': CSVReader(), '.json': JSONReader(), '.xlsx': PandasExcelReader(), # Media files '.jpg': ImageReader(), '.jpeg': ImageReader(), '.png': ImageReader(), '.mp3': OpenAIAudioTranscriptReader(), } # --- URL Handling --- if input_path.startswith("http"): if "https://www.youtube.com/watch?v=2N-rwsa5lEw2" in urlparse(input_path).netloc or "https://www.youtube.com/watch?v=2N-rwsa5lEw3" in urlparse(input_path).netloc: loader = YoutubeTranscriptReader() documents = loader.load_data(youtubelinks=[input_path]) else: loader = TrafilaturaWebReader() documents = loader.load_data(urls=[input_path]) # --- Local File Handling --- else: if not os.path.exists(input_path): return [Document(text=f"Error: File not found at {input_path}")] file_extension = os.path.splitext(input_path)[1].lower() if file_extension in readers_map: loader = readers_map[file_extension] documents = loader.load_data(file=input_path) else: # Fallback for text-based files without a specific reader (e.g., .py, .txt, .md) try: with open(input_path, 'r', encoding='utf-8') as f: content = f.read() documents = [Document(text=content, metadata={"source": input_path})] except Exception as e: return [Document(text=f"Error reading file as plain text: {e}")] # Add the source path to metadata for traceability for doc in documents: doc.metadata["source"] = input_path return documents # --- Create the final LlamaIndex Tool from the completed function --- read_and_parse_tool = FunctionTool.from_defaults( fn=read_and_parse_content, name="read_and_parse_tool", description=( "Use this tool to read and extract content from any given file or URL. " "It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, " "YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text " "from files like .py or .txt. The input MUST be a single valid file path or a URL." ) ) from typing import List from llama_index.core import VectorStoreIndex, Document, Settings from llama_index.core.tools import QueryEngineTool from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser from llama_index.core.postprocessor import SentenceTransformerRerank from llama_index.core.query_engine import RetrieverQueryEngine def create_rag_tool(documents: List[Document]) -> QueryEngineTool: """ Creates a RAG query engine tool from a list of documents using advanced components. Inspired by 'create_advanced_index' and 'create_context_aware_query_engine' methods. Args: documents: A list of LlamaIndex Document objects from the read_and_parse_tool. Returns: A QueryEngineTool configured for the agent to use in the current task. """ if not documents: return None # --- 1. Node Parsing (from your 'create_advanced_index' logic) --- # Using the exact parsers and logic you defined. hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128]) sentence_window_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) # Choose parser based on document count if len(documents) > 5: # Heuristic for using hierarchical parser nodes = hierarchical_parser.get_nodes_from_documents(documents) else: nodes = sentence_window_parser.get_nodes_from_documents(documents) # --- 2. Index Creation --- # Assumes Settings.embed_model is configured globally as in your snippet index = VectorStoreIndex(nodes) # --- 3. Query Engine Creation (from your 'create_context_aware_query_engine' logic) --- # Using the exact reranker you specified reranker = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) query_engine = index.as_query_engine( similarity_top_k=10, node_postprocessors=[reranker], # Assumes Settings.llm is configured globally ) # --- 4. Wrap the Query Engine in a Tool --- rag_engine_tool = QueryEngineTool.from_defaults( query_engine=query_engine, name="rag_engine_tool", description=( "Use this tool to ask questions and query the content of documents that have already " "been loaded. This is your primary way to find answers from the provided context. " "The input is a natural language question about the documents' content." ) ) return rag_engine_tool import re from llama_index.core.tools import FunctionTool from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec # 1. Create the base DuckDuckGo search tool from the official spec. # This tool returns text summaries of search results, not just URLs. base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0] # 2. Define a wrapper function to post-process the output. def search_and_extract_top_url(query: str) -> str: """ Takes a search query, uses the base DuckDuckGo search tool to get results, and then parses the output to extract and return only the first URL. Args: query: The natural language search query. Returns: A string containing the first URL found, or an error message if none is found. """ # Call the base tool to get the search results as text search_results = base_duckduckgo_tool(query) # Use a regular expression to find the first URL in the text output # The \S+ pattern matches any sequence of non-whitespace characters url_match = re.search(r"https?://\S+", str(search_results)) if url_match: return url_match.group(0) else: return "No URL could be extracted from the search results." # 3. Create the final, customized FunctionTool for the agent. # This is the tool you will actually give to your agent. extract_url_tool = FunctionTool.from_defaults( fn=search_and_extract_top_url, name="extract_url_tool", description=( "Use this tool ONLY when you need to find a relevant URL to answer a question but no " "specific file, document, or URL has been provided. It takes a search query as input " "and returns a single, relevant URL." ) ) def execute_python_code(code: str) -> str: try: safe_globals = { "__builtins__": { "len": len, "str": str, "int": int, "float": float, "list": list, "dict": dict, "sum": sum, "max": max, "min": min, "round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate, "range": range, "zip": zip, "map": map, "filter": filter, "any": any, "all": all, "type": type, "isinstance": isinstance, "print": print, "open": open, "bool": bool, "set": set, "tuple": tuple }, # Core Python modules "math": __import__("math"), "datetime": __import__("datetime"), "re": __import__("re"), "os": __import__("os"), "sys": __import__("sys"), "json": __import__("json"), "csv": __import__("csv"), "random": __import__("random"), "itertools": __import__("itertools"), "collections": __import__("collections"), "functools": __import__("functools"), # Data Science and Numerical Computing "numpy": __import__("numpy"), "np": __import__("numpy"), "pandas": __import__("pandas"), "pd": __import__("pandas"), "scipy": __import__("scipy"), # Visualization "matplotlib": __import__("matplotlib"), "plt": __import__("matplotlib.pyplot"), "seaborn": __import__("seaborn"), "sns": __import__("seaborn"), "plotly": __import__("plotly"), # Machine Learning "sklearn": __import__("sklearn"), "xgboost": __import__("xgboost"), "lightgbm": __import__("lightgbm"), # Statistics "statistics": __import__("statistics"), "statsmodels": __import__("statsmodels"), # Image Processing "PIL": __import__("PIL"), "cv2": __import__("cv2"), "skimage": __import__("skimage"), # Network and Web "requests": __import__("requests"), "urllib": __import__("urllib"), # Text Processing "nltk": __import__("nltk"), "spacy": __import__("spacy"), # Time Series "pytz": __import__("pytz"), # Utilities "tqdm": __import__("tqdm"), "pickle": __import__("pickle"), "gzip": __import__("gzip"), "base64": __import__("base64"), "hashlib": __import__("hashlib"), "uuid": __import__("uuid"), # Scientific Computing "sympy": __import__("sympy"), "networkx": __import__("networkx"), # Database "sqlite3": __import__("sqlite3"), # Parallel Processing "multiprocessing": __import__("multiprocessing"), "threading": __import__("threading"), "concurrent": __import__("concurrent"), } exec_locals = {} exec(code, safe_globals, exec_locals) if 'result' in exec_locals: return str(exec_locals['result']) else: return "Code executed successfully" except Exception as e: return f"Code execution failed: {str(e)}" code_execution_tool = FunctionTool.from_defaults( fn=execute_python_code, name="Python Code Execution", description="Execute Python code safely for calculations and data processing" ) import re from llama_index.core.tools import FunctionTool from llama_index.llms.huggingface import HuggingFaceLLM # --- 1. Initialize a dedicated LLM for Code Generation --- # It's good practice to use a model specifically fine-tuned for coding. # This model is loaded only once for efficiency. try: code_llm = HuggingFaceLLM( model_name="Qwen/Qwen2.5-Coder-7B", tokenizer_name="Qwen/Qwen2.5-Coder-7B", device_map="auto", model_kwargs={"torch_dtype": "auto"}, # Set generation parameters for precise, non-creative code output generate_kwargs={"temperature": 0.0, "do_sample": False} ) except Exception as e: print(f"Error initializing code generation model: {e}") print("Code generation tool will not be available.") code_llm = None def generate_python_code(query: str) -> str: """ Generates executable Python code based on a natural language query. Args: query: A detailed description of the desired functionality for the Python code. Returns: A string containing only the generated Python code, ready for execution. """ if not code_llm: return "Error: Code generation model is not available." # --- 2. Create a precise prompt for the code model --- # This prompt explicitly asks for only code, no explanations. prompt = f""" Your task is to generate ONLY the Python code for the following request. Do not include any explanations, introductory text, or markdown formatting like '```python'. The output must be a single, clean block of Python code. Request: "{query}" Python Code: """ # --- 3. Generate the response and post-process it --- response = code_llm.complete(prompt) raw_code = str(response) # --- 4. Clean the output to ensure it's pure code --- # Models often wrap code in markdown fences, this removes them. code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL) if code_match: # Extract the code from within the markdown block return code_match.group(1).strip() else: # If no markdown, assume the model followed instructions and return the text directly return raw_code.strip() # --- 5. Create the LlamaIndex Tool from the function --- generate_code_tool = FunctionTool.from_defaults( fn=generate_python_code, name="generate_python_code_tool", description=( "Use this tool to generate executable Python code based on a natural language description of a task. " "The input should be a clear and specific request for what the code should do (e.g., 'a function to " "calculate the nth Fibonacci number'). The tool returns a string containing only the Python code." ) ) class EnhancedGAIAAgent: def __init__(self): print("Initializing Enhanced GAIA Agent...") # Vérification du token HuggingFace hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if not hf_token: raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required") # Agent coordinateur principal qui utilise les agents spécialisés comme tools self.coordinator = ReActAgent( name="GAIACoordinator", description="Main GAIA coordinator that uses specialized capabilities as intelligent tools", system_prompt=""" You are the main GAIA coordinator using ReAct reasoning methodology. You have access to THREE specialist tools: **1. analysis_tool** - Advanced multimodal document analysis specialist - Use for: PDF, Word, CSV, image file analysis - When to use: Questions with file attachments, document analysis, data extraction **2. research_tool** - Intelligent research specialist with automatic routing - Use for: External knowledge, current events, scientific papers - When to use: Questions requiring external knowledge, factual verification, current information **3. code_tool** - Advanced computational specialist using ReAct reasoning - Use for: Mathematical calculations, data processing, logical operations - Capabilities: Generates and executes Python, handles complex computations, step-by-step problem solving - When to use: Precise calculations, data manipulation, mathematical problem solving **4. code_execution_tool** - Use only to execute .py file CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format : NO explanations, NO additional text, ONLY the precise answer """, llm=proj_llm, tools=[analysis_tool, research_tool, code_tool, code_execution_tool], max_steps=10, verbose = True, callback_manager=callback_manager, ) async def format_gaia_answer(self, raw_response: str, original_question: str) -> str: """ Post-process the agent response to extract the exact GAIA format answer """ format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly. Examples: Question: "How many research papers were published by the university between 2010 and 2020?" Response: "Based on my analysis of the data, I found that the university published 156 research papers between 2010 and 2020." Answer: 156 Question: "What is the last name of the software engineer mentioned in the report?" Response: "After reviewing the document, the software engineer mentioned is Dr. Martinez who developed the system." Answer: Martinez Question: "List the programming languages from this job description, alphabetized:" Response: "The job description mentions several programming languages including Python, Java, C++, and JavaScript. When alphabetized, these are: C++, Java, JavaScript, Python" Answer: C++, Java, JavaScript, Python Question: "Give only the first name of the developer who created the framework." Response: "The framework was created by Sarah Johnson, a senior developer at the company." Answer: Sarah Question: "Give the ISO country code as your answer." Response: "The country in question is France, which has the ISO code FRA." Answer: FRA Question: "Provide your response in standard notation." Response: "The calculated value is 314 million, which in standard notation is 3.14e+8" Answer: 3.14e+8 Now extract the exact answer: Question: {original_question} Response: {raw_response} Answer:""" try: formatting_response = proj_llm.complete(format_prompt) answer = str(formatting_response).strip() # Extract just the answer after "Answer:" if "Answer:" in answer: answer = answer.split("Answer:")[-1].strip() return answer except Exception as e: print(f"Error in formatting: {e}") return self._extract_fallback_answer(raw_response) def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: """Download file associated with task_id""" try: response = requests.get(f"{api_url}/files/{task_id}", timeout=30) response.raise_for_status() # Save file locally filename = f"task_{task_id}_file" with open(filename, 'wb') as f: f.write(response.content) return filename except Exception as e: print(f"Failed to download file for task {task_id}: {e}") return None async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str: question = question_data.get("Question", "") task_id = question_data.get("task_id", "") # Try to download file try: file_path = self.download_gaia_file(task_id) except Exception as e: print(f"Failed to download file for task {task_id}: {e}") file_path = None context_prompt = f""" GAIA Task ID: {task_id} Question: {question} {'File downloaded: ' + file_path if file_path else 'No additional files referenced'} Additionnal instructions to system prompt : 1. If a file is available, use the analysis_tool (except for .py files). 2. If a link is in the question, use the research_tool. """ try: ctx = Context(self.coordinator) # Use streaming to see step-by-step reasoning print("=== AGENT REASONING STEPS ===") handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt) full_response = "" async for event in handler.stream_events(): if isinstance(event, AgentStream): print(event.delta, end="", flush=True) full_response += event.delta # Get the final response raw_response = await handler print("\n=== END REASONING ===") # Post-process to extract exact GAIA format formatted_answer = await self.format_gaia_answer(str(raw_response), question) print(f"Formatted answer: {formatted_answer}") return formatted_answer except Exception as e: error_msg = f"Error processing question: {str(e)}" print(error_msg) return error_msg