Spaces:
Configuration error
Configuration error
Update agent.py
Browse files
agent.py
CHANGED
@@ -2,9 +2,10 @@
|
|
2 |
import logging
|
3 |
import os
|
4 |
import re
|
5 |
-
from typing import Dict, Any, List
|
6 |
from urllib.parse import urlparse
|
7 |
import torch
|
|
|
8 |
|
9 |
# Third-party imports
|
10 |
import requests
|
@@ -22,7 +23,6 @@ from llama_index.core.workflow import Context
|
|
22 |
from llama_index.postprocessor.colpali_rerank import ColPaliRerank
|
23 |
from llama_index.core.schema import ImageNode, TextNode
|
24 |
|
25 |
-
|
26 |
# LlamaIndex specialized imports
|
27 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
28 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
@@ -34,25 +34,38 @@ from llama_index.tools.arxiv import ArxivToolSpec
|
|
34 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
35 |
from llama_index.core.agent.workflow import AgentWorkflow
|
36 |
|
37 |
-
#
|
38 |
from llama_index.readers.file import (
|
39 |
PDFReader,
|
40 |
DocxReader,
|
41 |
CSVReader,
|
42 |
-
PandasExcelReader
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
from llama_index.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
import importlib.util
|
52 |
import sys
|
53 |
-
|
54 |
import weave
|
|
|
55 |
weave.init("gaia-llamaindex-agents")
|
|
|
56 |
def get_max_memory_config(max_memory_per_gpu):
|
57 |
"""Generate max_memory config for available GPUs"""
|
58 |
if torch.cuda.is_available():
|
@@ -63,44 +76,135 @@ def get_max_memory_config(max_memory_per_gpu):
|
|
63 |
return max_memory
|
64 |
return None
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
tokenizer_name="Qwen/Qwen2.5-Coder-3B-Instruct",
|
83 |
-
device_map= "auto",
|
84 |
-
model_kwargs={
|
85 |
-
"torch_dtype": "auto"},
|
86 |
-
# Set generation parameters for precise, non-creative code output
|
87 |
-
generate_kwargs={"do_sample": False}
|
88 |
-
)
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
logging.basicConfig(level=logging.INFO)
|
101 |
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
|
102 |
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
Settings.llm = proj_llm
|
105 |
Settings.embed_model = embed_model
|
106 |
|
@@ -109,12 +213,25 @@ def read_and_parse_content(input_path: str) -> List[Document]:
|
|
109 |
Reads and parses content from a local file path into Document objects.
|
110 |
URL handling has been moved to search_and_extract_top_url.
|
111 |
"""
|
112 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if not os.path.exists(input_path):
|
114 |
return [Document(text=f"Error: File not found at {input_path}")]
|
115 |
|
116 |
file_extension = os.path.splitext(input_path)[1].lower()
|
117 |
-
|
118 |
# Readers map
|
119 |
readers_map = {
|
120 |
'.pdf': PDFReader(),
|
@@ -125,31 +242,39 @@ def read_and_parse_content(input_path: str) -> List[Document]:
|
|
125 |
'.xlsx': PandasExcelReader(),
|
126 |
}
|
127 |
|
|
|
128 |
if file_extension in ['.mp3', '.mp4', '.wav', '.m4a', '.flac']:
|
129 |
try:
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
return documents
|
133 |
except Exception as e:
|
134 |
return [Document(text=f"Error transcribing audio: {e}")]
|
135 |
|
|
|
136 |
if file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
|
137 |
-
# Load the actual image content, not just the path
|
138 |
try:
|
139 |
with open(input_path, 'rb') as f:
|
140 |
image_data = f.read()
|
141 |
return [Document(
|
142 |
text=f"IMAGE_CONTENT_BINARY",
|
143 |
metadata={
|
144 |
-
"source": input_path,
|
145 |
-
"type": "image",
|
146 |
"path": input_path,
|
147 |
-
"image_data": image_data
|
148 |
}
|
149 |
)]
|
150 |
except Exception as e:
|
151 |
return [Document(text=f"Error reading image: {e}")]
|
152 |
|
|
|
153 |
if file_extension in readers_map:
|
154 |
loader = readers_map[file_extension]
|
155 |
documents = loader.load_data(file=input_path)
|
@@ -170,52 +295,51 @@ def read_and_parse_content(input_path: str) -> List[Document]:
|
|
170 |
|
171 |
class DynamicQueryEngineManager:
|
172 |
"""Single unified manager for all RAG operations - replaces the entire static approach."""
|
173 |
-
|
174 |
def __init__(self, initial_documents: List[str] = None):
|
175 |
self.documents = []
|
176 |
self.query_engine_tool = None
|
177 |
-
|
178 |
# Load initial documents if provided
|
179 |
if initial_documents:
|
180 |
self._load_initial_documents(initial_documents)
|
181 |
-
|
182 |
self._create_rag_tool()
|
183 |
-
|
184 |
def _load_initial_documents(self, document_paths: List[str]):
|
185 |
"""Load initial documents using read_and_parse_content."""
|
186 |
for path in document_paths:
|
187 |
docs = read_and_parse_content(path)
|
188 |
self.documents.extend(docs)
|
189 |
print(f"Loaded {len(self.documents)} initial documents")
|
190 |
-
|
191 |
def _create_rag_tool(self):
|
192 |
"""Create RAG tool using multimodal-aware parsing."""
|
193 |
documents = self.documents if self.documents else [
|
194 |
Document(text="No documents loaded yet. Use web search to add content.")
|
195 |
]
|
196 |
-
|
197 |
# Separate text and image documents for proper processing
|
198 |
text_documents = []
|
199 |
image_documents = []
|
200 |
-
|
201 |
for doc in documents:
|
202 |
doc_type = doc.metadata.get("type", "")
|
203 |
source = doc.metadata.get("source", "").lower()
|
204 |
file_type = doc.metadata.get("file_type", "")
|
205 |
-
|
206 |
# Identify image documents
|
207 |
-
if (doc_type in ["image", "web_image"] or
|
208 |
file_type in ['jpg', 'png', 'jpeg', 'gif', 'bmp', 'webp'] or
|
209 |
any(ext in source for ext in ['.jpg', '.png', '.jpeg', '.gif', '.bmp', '.webp'])):
|
210 |
image_documents.append(doc)
|
211 |
else:
|
212 |
text_documents.append(doc)
|
213 |
-
|
214 |
# Use UnstructuredElementNodeParser for text content with multimodal awareness
|
215 |
element_parser = UnstructuredElementNodeParser()
|
216 |
-
|
217 |
nodes = []
|
218 |
-
|
219 |
# Process text documents with UnstructuredElementNodeParser
|
220 |
if text_documents:
|
221 |
try:
|
@@ -228,7 +352,7 @@ class DynamicQueryEngineManager:
|
|
228 |
simple_parser = SimpleNodeParser.from_defaults(chunk_size=1024, chunk_overlap=200)
|
229 |
text_nodes = simple_parser.get_nodes_from_documents(text_documents)
|
230 |
nodes.extend(text_nodes)
|
231 |
-
|
232 |
# Process image documents as ImageNodes
|
233 |
if image_documents:
|
234 |
for img_doc in image_documents:
|
@@ -248,61 +372,67 @@ class DynamicQueryEngineManager:
|
|
248 |
metadata=img_doc.metadata
|
249 |
)
|
250 |
nodes.append(text_node)
|
251 |
-
|
252 |
index = VectorStoreIndex(nodes)
|
|
|
253 |
class HybridReranker:
|
254 |
def __init__(self):
|
255 |
self.text_reranker = SentenceTransformerRerank(
|
256 |
-
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
257 |
top_n=3
|
258 |
)
|
|
|
259 |
self.visual_reranker = ColPaliRerank(
|
260 |
top_n=3,
|
261 |
model="vidore/colpali-v1.2",
|
262 |
keep_retrieval_score=True,
|
263 |
device="cpu"
|
264 |
)
|
|
|
265 |
def postprocess_nodes(self, nodes, query_bundle):
|
266 |
-
#
|
267 |
text_nodes = []
|
268 |
visual_nodes = []
|
269 |
-
|
270 |
for node in nodes:
|
271 |
-
if (hasattr(node, 'image_path') and node.image_path) or
|
272 |
-
(hasattr(node, 'metadata') and node.metadata.get('file_type') in ['jpg', 'png', 'jpeg', 'pdf']) or \
|
273 |
-
(hasattr(node, 'metadata') and node.metadata.get('type') in ['image', 'web_image']):
|
274 |
visual_nodes.append(node)
|
275 |
else:
|
276 |
text_nodes.append(node)
|
277 |
-
|
|
|
278 |
reranked_text = []
|
279 |
reranked_visual = []
|
280 |
-
|
281 |
if text_nodes:
|
282 |
reranked_text = self.text_reranker.postprocess_nodes(text_nodes, query_bundle)
|
283 |
-
|
284 |
if visual_nodes:
|
285 |
reranked_visual = self.visual_reranker.postprocess_nodes(visual_nodes, query_bundle)
|
286 |
-
|
|
|
287 |
combined_results = []
|
288 |
max_len = max(len(reranked_text), len(reranked_visual))
|
289 |
-
|
290 |
for i in range(max_len):
|
291 |
if i < len(reranked_text):
|
292 |
combined_results.append(reranked_text[i])
|
293 |
if i < len(reranked_visual):
|
294 |
combined_results.append(reranked_visual[i])
|
295 |
-
|
296 |
return combined_results[:5]
|
297 |
-
|
298 |
hybrid_reranker = HybridReranker()
|
299 |
-
|
300 |
query_engine = index.as_query_engine(
|
301 |
similarity_top_k=20,
|
302 |
node_postprocessors=[hybrid_reranker],
|
303 |
response_mode="tree_summarize"
|
304 |
)
|
305 |
-
|
|
|
|
|
|
|
306 |
self.query_engine_tool = QueryEngineTool.from_defaults(
|
307 |
query_engine=query_engine,
|
308 |
name="dynamic_hybrid_multimodal_rag_tool",
|
@@ -312,16 +442,16 @@ class DynamicQueryEngineManager:
|
|
312 |
"Automatically updated with web search content."
|
313 |
)
|
314 |
)
|
315 |
-
|
316 |
def add_documents(self, new_documents: List[Document]):
|
317 |
"""Add documents from web search and recreate tool."""
|
318 |
self.documents.extend(new_documents)
|
319 |
self._create_rag_tool() # Recreate with ALL documents
|
320 |
print(f"Added {len(new_documents)} documents. Total: {len(self.documents)}")
|
321 |
-
|
322 |
def get_tool(self):
|
323 |
return self.query_engine_tool
|
324 |
-
|
325 |
# Global instance
|
326 |
dynamic_qe_manager = DynamicQueryEngineManager()
|
327 |
|
@@ -336,15 +466,16 @@ def search_and_extract_content_from_url(query: str) -> List[Document]:
|
|
336 |
"""
|
337 |
# Get URL from search
|
338 |
search_results = base_duckduckgo_tool(query, max_results=1)
|
339 |
-
url_match = re.search(r"https
|
340 |
-
|
341 |
if not url_match:
|
342 |
return [Document(text="No URL could be extracted from the search results.")]
|
343 |
-
|
344 |
url = url_match.group(0)[:-2]
|
345 |
print(url)
|
|
|
346 |
documents = []
|
347 |
-
|
348 |
try:
|
349 |
# Check if it's a YouTube URL
|
350 |
if "youtube" in urlparse(url).netloc or "youtu.be" in urlparse(url).netloc:
|
@@ -353,34 +484,36 @@ def search_and_extract_content_from_url(query: str) -> List[Document]:
|
|
353 |
else:
|
354 |
loader = BeautifulSoupWebReader()
|
355 |
documents = loader.load_data(urls=[url])
|
|
|
356 |
for doc in documents:
|
357 |
doc.metadata["source"] = url
|
358 |
doc.metadata["type"] = "web_text"
|
|
|
359 |
return documents
|
360 |
except Exception as e:
|
361 |
# Handle any exceptions that occur during content extraction
|
362 |
return [Document(text=f"Error extracting content from URL: {str(e)}")]
|
363 |
-
|
364 |
def enhanced_web_search_and_update(query: str) -> str:
|
365 |
"""
|
366 |
Performs web search, extracts content, and adds it to the dynamic query engine.
|
367 |
"""
|
368 |
# Extract content from web search
|
369 |
documents = search_and_extract_content_from_url(query)
|
370 |
-
|
371 |
# Add documents to the dynamic query engine
|
372 |
if documents and not any("Error" in doc.text for doc in documents):
|
373 |
dynamic_qe_manager.add_documents(documents)
|
374 |
-
|
375 |
# Return summary of what was added
|
376 |
text_docs = [doc for doc in documents if doc.metadata.get("type") == "web_text"]
|
377 |
image_docs = [doc for doc in documents if doc.metadata.get("type") == "web_image"]
|
378 |
-
|
379 |
summary = f"Successfully added web content to knowledge base:\n"
|
380 |
summary += f"- {len(text_docs)} text documents\n"
|
381 |
summary += f"- {len(image_docs)} images\n"
|
382 |
summary += f"Source: {documents[0].metadata.get('source', 'Unknown')}"
|
383 |
-
|
384 |
return summary
|
385 |
else:
|
386 |
error_msg = documents[0].text if documents else "No content extracted"
|
@@ -431,7 +564,7 @@ for module in core_modules:
|
|
431 |
# Data science modules (may not be available)
|
432 |
optional_modules = {
|
433 |
"numpy": "numpy",
|
434 |
-
"np": "numpy",
|
435 |
"pandas": "pandas",
|
436 |
"pd": "pandas",
|
437 |
"scipy": "scipy",
|
@@ -468,15 +601,13 @@ if safe_globals.get("PIL"):
|
|
468 |
safe_globals["Image"] = image_module
|
469 |
|
470 |
def execute_python_code(code: str) -> str:
|
471 |
-
try:
|
472 |
exec_locals = {}
|
473 |
exec(code, safe_globals, exec_locals)
|
474 |
-
|
475 |
if 'result' in exec_locals:
|
476 |
return str(exec_locals['result'])
|
477 |
else:
|
478 |
return "Code executed successfully"
|
479 |
-
|
480 |
except Exception as e:
|
481 |
return f"Code execution failed: {str(e)}"
|
482 |
|
@@ -490,21 +621,20 @@ def clean_response(response: str) -> str:
|
|
490 |
"""Clean response by removing common prefixes"""
|
491 |
response_clean = response.strip()
|
492 |
prefixes_to_remove = [
|
493 |
-
"FINAL ANSWER:", "Answer:", "The answer is:",
|
494 |
-
"Based on my analysis,", "After reviewing,",
|
495 |
"The result is:", "Final result:", "According to",
|
496 |
"In conclusion,", "Therefore,", "Thus,"
|
497 |
]
|
498 |
-
|
499 |
for prefix in prefixes_to_remove:
|
500 |
if response_clean.startswith(prefix):
|
501 |
response_clean = response_clean[len(prefix):].strip()
|
502 |
-
|
503 |
return response_clean
|
504 |
|
505 |
def llm_reformat(response: str, question: str) -> str:
|
506 |
"""Use LLM to reformat the response according to GAIA requirements"""
|
507 |
-
|
508 |
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
|
509 |
|
510 |
GAIA Format Rules:
|
@@ -532,17 +662,18 @@ Answer: C++, Java, Python
|
|
532 |
Now extract the exact answer:
|
533 |
Question: {question}
|
534 |
Response: {response}
|
|
|
535 |
Answer:"""
|
536 |
|
537 |
try:
|
538 |
# Use the global LLM instance
|
539 |
formatting_response = proj_llm.complete(format_prompt)
|
540 |
answer = str(formatting_response).strip()
|
541 |
-
|
542 |
# Extract just the answer after "Answer:"
|
543 |
if "Answer:" in answer:
|
544 |
answer = answer.split("Answer:")[-1].strip()
|
545 |
-
|
546 |
return answer
|
547 |
except Exception as e:
|
548 |
print(f"LLM reformatting failed: {e}")
|
@@ -551,46 +682,56 @@ Answer:"""
|
|
551 |
def final_answer_tool(agent_response: str, question: str) -> str:
|
552 |
"""
|
553 |
Simplified final answer tool using only LLM reformatting.
|
554 |
-
|
555 |
Args:
|
556 |
agent_response: The raw response from agent reasoning
|
557 |
question: The original question for context
|
558 |
-
|
559 |
Returns:
|
560 |
Exact answer in GAIA format
|
561 |
"""
|
562 |
-
|
563 |
# Step 1: Clean the response
|
564 |
cleaned_response = clean_response(agent_response)
|
565 |
-
|
566 |
# Step 2: Use LLM reformatting
|
567 |
formatted_answer = llm_reformat(cleaned_response, question)
|
568 |
-
|
569 |
print(f"Original response cleaned: {cleaned_response[:100]}...")
|
570 |
print(f"LLM formatted answer: {formatted_answer}")
|
571 |
-
|
572 |
-
return formatted_answer
|
573 |
|
|
|
574 |
|
575 |
class EnhancedGAIAAgent:
|
576 |
def __init__(self):
|
577 |
print("Initializing Enhanced GAIA Agent...")
|
578 |
-
|
579 |
# Vérification du token HuggingFace
|
580 |
-
hf_token = os.
|
581 |
if not hf_token:
|
582 |
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work")
|
583 |
-
|
584 |
# Initialize the dynamic query engine manager
|
585 |
self.dynamic_qe_manager = DynamicQueryEngineManager()
|
586 |
-
|
587 |
# Create enhanced agents with dynamic tools
|
588 |
self.external_knowledge_agent = ReActAgent(
|
589 |
-
name="external_knowledge_agent",
|
590 |
description="Advanced information retrieval with dynamic knowledge base",
|
591 |
-
system_prompt="""You are an advanced information specialist with a sophisticated RAG system.
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
tools=[
|
595 |
enhanced_web_search_tool,
|
596 |
self.dynamic_qe_manager.get_tool(),
|
@@ -598,8 +739,9 @@ class EnhancedGAIAAgent:
|
|
598 |
],
|
599 |
llm=proj_llm,
|
600 |
max_steps=8,
|
601 |
-
verbose=True
|
602 |
-
|
|
|
603 |
self.code_agent = ReActAgent(
|
604 |
name="code_agent",
|
605 |
description="Handles Python code for calculations and data processing",
|
@@ -607,28 +749,30 @@ class EnhancedGAIAAgent:
|
|
607 |
tools=[code_execution_tool],
|
608 |
llm=code_llm,
|
609 |
max_steps=6,
|
610 |
-
verbose=True
|
611 |
-
|
|
|
612 |
# Fixed indentation: coordinator initialization inside __init__
|
613 |
self.coordinator = AgentWorkflow(
|
614 |
agents=[self.external_knowledge_agent, self.code_agent],
|
615 |
root_agent="external_knowledge_agent"
|
616 |
)
|
617 |
-
|
618 |
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
|
619 |
"""Download file associated with task_id"""
|
620 |
try:
|
621 |
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
|
622 |
response.raise_for_status()
|
623 |
-
|
624 |
filename = f"task_{task_id}_file"
|
|
|
625 |
with open(filename, 'wb') as f:
|
626 |
f.write(response.content)
|
|
|
627 |
return filename
|
628 |
except Exception as e:
|
629 |
print(f"Failed to download file for task {task_id}: {e}")
|
630 |
return None
|
631 |
-
|
632 |
def add_documents_to_knowledge_base(self, file_path: str):
|
633 |
"""Add downloaded GAIA documents to the dynamic knowledge base"""
|
634 |
try:
|
@@ -636,25 +780,26 @@ class EnhancedGAIAAgent:
|
|
636 |
if documents:
|
637 |
self.dynamic_qe_manager.add_documents(documents)
|
638 |
print(f"Added {len(documents)} documents from {file_path} to dynamic knowledge base")
|
639 |
-
|
640 |
# Update the agent's tools with the refreshed query engine
|
641 |
self.external_knowledge_agent.tools = [
|
642 |
enhanced_web_search_tool,
|
643 |
self.dynamic_qe_manager.get_tool(), # Get the updated tool
|
644 |
code_execution_tool
|
645 |
]
|
|
|
646 |
return True
|
647 |
except Exception as e:
|
648 |
print(f"Failed to add documents from {file_path}: {e}")
|
649 |
return False
|
650 |
-
|
651 |
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
|
652 |
"""
|
653 |
Solve GAIA question with dynamic knowledge base integration
|
654 |
"""
|
655 |
question = question_data.get("Question", "")
|
656 |
task_id = question_data.get("task_id", "")
|
657 |
-
|
658 |
# Try to download and add file to knowledge base if task_id provided
|
659 |
file_path = None
|
660 |
if task_id:
|
@@ -666,44 +811,54 @@ class EnhancedGAIAAgent:
|
|
666 |
print(f"Successfully integrated GAIA file into dynamic knowledge base")
|
667 |
except Exception as e:
|
668 |
print(f"Failed to download/process file for task {task_id}: {e}")
|
669 |
-
|
670 |
-
# Enhanced context prompt with dynamic knowledge base awareness
|
671 |
context_prompt = f"""
|
672 |
GAIA Task ID: {task_id}
|
673 |
Question: {question}
|
674 |
{f'File processed and added to knowledge base: {file_path}' if file_path else 'No additional files'}
|
675 |
|
676 |
-
You are a general AI assistant. I will ask you a question.
|
677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
try:
|
679 |
ctx = Context(self.coordinator)
|
680 |
print("=== AGENT REASONING STEPS ===")
|
681 |
print(f"Dynamic knowledge base contains {len(self.dynamic_qe_manager.documents)} documents")
|
682 |
-
|
683 |
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
|
684 |
-
|
685 |
full_response = ""
|
|
|
686 |
async for event in handler.stream_events():
|
687 |
if isinstance(event, AgentStream):
|
688 |
print(event.delta, end="", flush=True)
|
689 |
full_response += event.delta
|
690 |
-
|
691 |
final_response = await handler
|
692 |
print("\n=== END REASONING ===")
|
693 |
-
|
694 |
# Extract the final formatted answer
|
695 |
-
final_answer = str(final_response)
|
696 |
-
|
697 |
print(f"Final GAIA formatted answer: {final_answer}")
|
698 |
print(f"Knowledge base now contains {len(self.dynamic_qe_manager.documents)} documents")
|
699 |
-
|
700 |
return final_answer
|
701 |
-
|
702 |
except Exception as e:
|
703 |
error_msg = f"Error processing question: {str(e)}"
|
704 |
print(error_msg)
|
705 |
return error_msg
|
706 |
-
|
707 |
def get_knowledge_base_stats(self):
|
708 |
"""Get statistics about the current knowledge base"""
|
709 |
return {
|
@@ -711,14 +866,14 @@ You are a general AI assistant. I will ask you a question. Report your thoughts,
|
|
711 |
"document_sources": [doc.metadata.get("source", "Unknown") for doc in self.dynamic_qe_manager.documents]
|
712 |
}
|
713 |
|
714 |
-
import asyncio
|
715 |
-
|
716 |
async def main():
|
717 |
agent = EnhancedGAIAAgent()
|
|
|
718 |
question_data = {
|
719 |
"Question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.",
|
720 |
"task_id": ""
|
721 |
}
|
|
|
722 |
print(question_data)
|
723 |
answer = await agent.solve_gaia_question(question_data)
|
724 |
print(f"Answer: {answer}")
|
|
|
2 |
import logging
|
3 |
import os
|
4 |
import re
|
5 |
+
from typing import Dict, Any, List, Optional, Union
|
6 |
from urllib.parse import urlparse
|
7 |
import torch
|
8 |
+
import asyncio
|
9 |
|
10 |
# Third-party imports
|
11 |
import requests
|
|
|
23 |
from llama_index.postprocessor.colpali_rerank import ColPaliRerank
|
24 |
from llama_index.core.schema import ImageNode, TextNode
|
25 |
|
|
|
26 |
# LlamaIndex specialized imports
|
27 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
28 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
34 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
35 |
from llama_index.core.agent.workflow import AgentWorkflow
|
36 |
|
37 |
+
# Import all required official LlamaIndex Readers
|
38 |
from llama_index.readers.file import (
|
39 |
PDFReader,
|
40 |
DocxReader,
|
41 |
CSVReader,
|
42 |
+
PandasExcelReader,
|
43 |
+
VideoAudioReader # Adding VideoAudioReader for handling audio/video without API
|
44 |
+
)
|
45 |
+
|
46 |
+
# Optional API-based imports (conditionally loaded)
|
47 |
+
try:
|
48 |
+
# Gemini (for API mode)
|
49 |
+
from llama_index.llms.gemini import Gemini
|
50 |
+
from llama_index.embeddings.gemini import GeminiEmbedding
|
51 |
+
from llama_index_llms_vllm import Vllm
|
52 |
+
GEMINI_AVAILABLE = True
|
53 |
+
except ImportError:
|
54 |
+
GEMINI_AVAILABLE = False
|
55 |
+
|
56 |
+
try:
|
57 |
+
# LlamaParse for document parsing (API mode)
|
58 |
+
from llama_cloud_services import LlamaParse
|
59 |
+
LLAMAPARSE_AVAILABLE = True
|
60 |
+
except ImportError:
|
61 |
+
LLAMAPARSE_AVAILABLE = False
|
62 |
|
63 |
import importlib.util
|
64 |
import sys
|
|
|
65 |
import weave
|
66 |
+
|
67 |
weave.init("gaia-llamaindex-agents")
|
68 |
+
|
69 |
def get_max_memory_config(max_memory_per_gpu):
|
70 |
"""Generate max_memory config for available GPUs"""
|
71 |
if torch.cuda.is_available():
|
|
|
76 |
return max_memory
|
77 |
return None
|
78 |
|
79 |
+
# Initialize models based on API availability
|
80 |
+
def initialize_models(use_api_mode=False):
|
81 |
+
"""Initialize LLM, Code LLM, and Embed models based on mode"""
|
82 |
+
if use_api_mode and GEMINI_AVAILABLE:
|
83 |
+
# API Mode - Using Google's Gemini models
|
84 |
+
try:
|
85 |
+
print("Initializing models in API mode with Gemini...")
|
86 |
+
google_api_key = os.environ.get("GOOGLE_API_KEY")
|
87 |
+
if not google_api_key:
|
88 |
+
print("WARNING: GOOGLE_API_KEY not found. Falling back to non-API mode.")
|
89 |
+
return initialize_models(use_api_mode=False)
|
90 |
+
|
91 |
+
# Main LLM - Gemini 2.0 Flash
|
92 |
+
proj_llm = Gemini(
|
93 |
+
model="models/gemini-2.0-flash",
|
94 |
+
api_key=google_api_key,
|
95 |
+
max_tokens=16000,
|
96 |
+
temperature=0.6,
|
97 |
+
top_p=0.95,
|
98 |
+
top_k=20
|
99 |
+
)
|
100 |
|
101 |
+
# Same model for code since Gemini is good at code
|
102 |
+
code_llm = proj_llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# Vertex AI multimodal embedding
|
105 |
+
embed_model = GeminiEmbedding(
|
106 |
+
model_name="models/embedding-001",
|
107 |
+
api_key=google_api_key,
|
108 |
+
task_type="retrieval_document"
|
109 |
+
)
|
110 |
+
|
111 |
+
return proj_llm, code_llm, embed_model
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error initializing API mode: {e}")
|
114 |
+
print("Falling back to non-API mode...")
|
115 |
+
return initialize_models(use_api_mode=False)
|
116 |
+
else:
|
117 |
+
# Non-API Mode - Using HuggingFace models
|
118 |
+
print("Initializing models in non-API mode with local models...")
|
119 |
+
try:
|
120 |
+
# Try to use Pixtral 12B with vLLM if available
|
121 |
+
pixtral_model = "Qwen/Qwen3-8B" # Fallback model
|
122 |
+
try:
|
123 |
+
if importlib.util.find_spec("llama_index_llms_vllm") is not None:
|
124 |
+
from llama_index_llms_vllm import Vllm
|
125 |
+
# Check if Pixtral 12B is accessible
|
126 |
+
if os.path.exists("/path/to/pixtral-12b") or True: # Placeholder check
|
127 |
+
pixtral_model = "mistralai/pixtral-12b"
|
128 |
+
print(f"Using Pixtral 12B with vLLM")
|
129 |
+
|
130 |
+
# Custom prompt template for Pixtral model
|
131 |
+
def messages_to_prompt(messages):
|
132 |
+
prompt = "\n".join([str(x) for x in messages])
|
133 |
+
return f"<s>[INST] {prompt} [/INST] </s>\n"
|
134 |
+
|
135 |
+
def completion_to_prompt(completion):
|
136 |
+
return f"<s>[INST] {completion} [/INST] </s>\n"
|
137 |
+
|
138 |
+
proj_llm = Vllm(
|
139 |
+
model=pixtral_model,
|
140 |
+
tensor_parallel_size=1, # Adjust based on available GPUs
|
141 |
+
max_new_tokens=16000,
|
142 |
+
messages_to_prompt=messages_to_prompt,
|
143 |
+
completion_to_prompt=completion_to_prompt,
|
144 |
+
temperature=0.6,
|
145 |
+
top_p=0.95,
|
146 |
+
top_k=20
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
# Use regular Qwen model if Pixtral not found
|
150 |
+
raise ImportError("Pixtral 12B not found")
|
151 |
+
else:
|
152 |
+
raise ImportError("vLLM not available")
|
153 |
+
except (ImportError, Exception) as e:
|
154 |
+
print(f"Error loading Pixtral with vLLM: {e}")
|
155 |
+
print(f"Falling back to {pixtral_model} with HuggingFace...")
|
156 |
+
|
157 |
+
# Fallback to regular HuggingFace LLM
|
158 |
+
proj_llm = HuggingFaceLLM(
|
159 |
+
model_name=pixtral_model,
|
160 |
+
tokenizer_name=pixtral_model,
|
161 |
+
device_map="auto",
|
162 |
+
max_new_tokens=16000,
|
163 |
+
model_kwargs={"torch_dtype": "auto"},
|
164 |
+
generate_kwargs={
|
165 |
+
"temperature": 0.6,
|
166 |
+
"top_p": 0.95,
|
167 |
+
"top_k": 20
|
168 |
+
}
|
169 |
+
)
|
170 |
+
|
171 |
+
# Code LLM
|
172 |
+
code_llm = HuggingFaceLLM(
|
173 |
+
model_name="Qwen/Qwen2.5-Coder-3B-Instruct",
|
174 |
+
tokenizer_name="Qwen/Qwen2.5-Coder-3B-Instruct",
|
175 |
+
device_map="auto",
|
176 |
+
model_kwargs={"torch_dtype": "auto"},
|
177 |
+
generate_kwargs={"do_sample": False}
|
178 |
+
)
|
179 |
+
|
180 |
+
# Embedding model
|
181 |
+
embed_model = HuggingFaceEmbedding(
|
182 |
+
model_name="llamaindex/vdr-2b-multi-v1",
|
183 |
+
device="cpu",
|
184 |
+
trust_remote_code=True,
|
185 |
+
model_kwargs={
|
186 |
+
"torch_dtype": "auto",
|
187 |
+
"low_cpu_mem_usage": True
|
188 |
+
}
|
189 |
+
)
|
190 |
|
191 |
+
return proj_llm, code_llm, embed_model
|
192 |
+
except Exception as e:
|
193 |
+
print(f"Error initializing models: {e}")
|
194 |
+
raise
|
195 |
+
|
196 |
+
# Setup logging
|
197 |
logging.basicConfig(level=logging.INFO)
|
198 |
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
|
199 |
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
|
200 |
|
201 |
+
# Use environment variable to determine API mode
|
202 |
+
USE_API_MODE = os.environ.get("USE_API_MODE", "false").lower() == "true"
|
203 |
+
|
204 |
+
# Initialize models based on API mode setting
|
205 |
+
proj_llm, code_llm, embed_model = initialize_models(use_api_mode=USE_API_MODE)
|
206 |
+
|
207 |
+
# Set global settings
|
208 |
Settings.llm = proj_llm
|
209 |
Settings.embed_model = embed_model
|
210 |
|
|
|
213 |
Reads and parses content from a local file path into Document objects.
|
214 |
URL handling has been moved to search_and_extract_top_url.
|
215 |
"""
|
216 |
+
# Check if API mode and LlamaParse is available for enhanced document parsing
|
217 |
+
if USE_API_MODE and LLAMAPARSE_AVAILABLE:
|
218 |
+
try:
|
219 |
+
llamacloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
220 |
+
if llamacloud_api_key:
|
221 |
+
# Use LlamaParse for enhanced document parsing
|
222 |
+
print(f"Using LlamaParse to extract content from {input_path}")
|
223 |
+
parser = LlamaParse(api_key=llamacloud_api_key)
|
224 |
+
return parser.load_data(input_path)
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Error using LlamaParse: {e}")
|
227 |
+
print("Falling back to standard document parsing...")
|
228 |
+
|
229 |
+
# Standard document parsing (fallback)
|
230 |
if not os.path.exists(input_path):
|
231 |
return [Document(text=f"Error: File not found at {input_path}")]
|
232 |
|
233 |
file_extension = os.path.splitext(input_path)[1].lower()
|
234 |
+
|
235 |
# Readers map
|
236 |
readers_map = {
|
237 |
'.pdf': PDFReader(),
|
|
|
242 |
'.xlsx': PandasExcelReader(),
|
243 |
}
|
244 |
|
245 |
+
# Audio/Video files using the appropriate reader based on mode
|
246 |
if file_extension in ['.mp3', '.mp4', '.wav', '.m4a', '.flac']:
|
247 |
try:
|
248 |
+
if USE_API_MODE:
|
249 |
+
# Use AssemblyAI with API mode
|
250 |
+
loader = AssemblyAIAudioTranscriptReader(file_path=input_path)
|
251 |
+
documents = loader.load_data()
|
252 |
+
else:
|
253 |
+
# Use VideoAudioReader without API
|
254 |
+
loader = VideoAudioReader()
|
255 |
+
documents = loader.load_data(input_path)
|
256 |
return documents
|
257 |
except Exception as e:
|
258 |
return [Document(text=f"Error transcribing audio: {e}")]
|
259 |
|
260 |
+
# Handle image files
|
261 |
if file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
|
|
|
262 |
try:
|
263 |
with open(input_path, 'rb') as f:
|
264 |
image_data = f.read()
|
265 |
return [Document(
|
266 |
text=f"IMAGE_CONTENT_BINARY",
|
267 |
metadata={
|
268 |
+
"source": input_path,
|
269 |
+
"type": "image",
|
270 |
"path": input_path,
|
271 |
+
"image_data": image_data
|
272 |
}
|
273 |
)]
|
274 |
except Exception as e:
|
275 |
return [Document(text=f"Error reading image: {e}")]
|
276 |
|
277 |
+
# Use appropriate reader for supported file types
|
278 |
if file_extension in readers_map:
|
279 |
loader = readers_map[file_extension]
|
280 |
documents = loader.load_data(file=input_path)
|
|
|
295 |
|
296 |
class DynamicQueryEngineManager:
|
297 |
"""Single unified manager for all RAG operations - replaces the entire static approach."""
|
298 |
+
|
299 |
def __init__(self, initial_documents: List[str] = None):
|
300 |
self.documents = []
|
301 |
self.query_engine_tool = None
|
302 |
+
|
303 |
# Load initial documents if provided
|
304 |
if initial_documents:
|
305 |
self._load_initial_documents(initial_documents)
|
306 |
+
|
307 |
self._create_rag_tool()
|
308 |
+
|
309 |
def _load_initial_documents(self, document_paths: List[str]):
|
310 |
"""Load initial documents using read_and_parse_content."""
|
311 |
for path in document_paths:
|
312 |
docs = read_and_parse_content(path)
|
313 |
self.documents.extend(docs)
|
314 |
print(f"Loaded {len(self.documents)} initial documents")
|
315 |
+
|
316 |
def _create_rag_tool(self):
|
317 |
"""Create RAG tool using multimodal-aware parsing."""
|
318 |
documents = self.documents if self.documents else [
|
319 |
Document(text="No documents loaded yet. Use web search to add content.")
|
320 |
]
|
321 |
+
|
322 |
# Separate text and image documents for proper processing
|
323 |
text_documents = []
|
324 |
image_documents = []
|
325 |
+
|
326 |
for doc in documents:
|
327 |
doc_type = doc.metadata.get("type", "")
|
328 |
source = doc.metadata.get("source", "").lower()
|
329 |
file_type = doc.metadata.get("file_type", "")
|
330 |
+
|
331 |
# Identify image documents
|
332 |
+
if (doc_type in ["image", "web_image"] or
|
333 |
file_type in ['jpg', 'png', 'jpeg', 'gif', 'bmp', 'webp'] or
|
334 |
any(ext in source for ext in ['.jpg', '.png', '.jpeg', '.gif', '.bmp', '.webp'])):
|
335 |
image_documents.append(doc)
|
336 |
else:
|
337 |
text_documents.append(doc)
|
338 |
+
|
339 |
# Use UnstructuredElementNodeParser for text content with multimodal awareness
|
340 |
element_parser = UnstructuredElementNodeParser()
|
|
|
341 |
nodes = []
|
342 |
+
|
343 |
# Process text documents with UnstructuredElementNodeParser
|
344 |
if text_documents:
|
345 |
try:
|
|
|
352 |
simple_parser = SimpleNodeParser.from_defaults(chunk_size=1024, chunk_overlap=200)
|
353 |
text_nodes = simple_parser.get_nodes_from_documents(text_documents)
|
354 |
nodes.extend(text_nodes)
|
355 |
+
|
356 |
# Process image documents as ImageNodes
|
357 |
if image_documents:
|
358 |
for img_doc in image_documents:
|
|
|
372 |
metadata=img_doc.metadata
|
373 |
)
|
374 |
nodes.append(text_node)
|
375 |
+
|
376 |
index = VectorStoreIndex(nodes)
|
377 |
+
|
378 |
class HybridReranker:
|
379 |
def __init__(self):
|
380 |
self.text_reranker = SentenceTransformerRerank(
|
381 |
+
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
382 |
top_n=3
|
383 |
)
|
384 |
+
|
385 |
self.visual_reranker = ColPaliRerank(
|
386 |
top_n=3,
|
387 |
model="vidore/colpali-v1.2",
|
388 |
keep_retrieval_score=True,
|
389 |
device="cpu"
|
390 |
)
|
391 |
+
|
392 |
def postprocess_nodes(self, nodes, query_bundle):
|
393 |
+
# Separate text and visual nodes
|
394 |
text_nodes = []
|
395 |
visual_nodes = []
|
396 |
+
|
397 |
for node in nodes:
|
398 |
+
if (hasattr(node, 'image_path') and node.image_path) or (hasattr(node, 'metadata') and node.metadata.get('file_type') in ['jpg', 'png', 'jpeg', 'pdf']) or (hasattr(node, 'metadata') and node.metadata.get('type') in ['image', 'web_image']):
|
|
|
|
|
399 |
visual_nodes.append(node)
|
400 |
else:
|
401 |
text_nodes.append(node)
|
402 |
+
|
403 |
+
# Apply appropriate reranker
|
404 |
reranked_text = []
|
405 |
reranked_visual = []
|
406 |
+
|
407 |
if text_nodes:
|
408 |
reranked_text = self.text_reranker.postprocess_nodes(text_nodes, query_bundle)
|
409 |
+
|
410 |
if visual_nodes:
|
411 |
reranked_visual = self.visual_reranker.postprocess_nodes(visual_nodes, query_bundle)
|
412 |
+
|
413 |
+
# Interleave results
|
414 |
combined_results = []
|
415 |
max_len = max(len(reranked_text), len(reranked_visual))
|
416 |
+
|
417 |
for i in range(max_len):
|
418 |
if i < len(reranked_text):
|
419 |
combined_results.append(reranked_text[i])
|
420 |
if i < len(reranked_visual):
|
421 |
combined_results.append(reranked_visual[i])
|
422 |
+
|
423 |
return combined_results[:5]
|
424 |
+
|
425 |
hybrid_reranker = HybridReranker()
|
426 |
+
|
427 |
query_engine = index.as_query_engine(
|
428 |
similarity_top_k=20,
|
429 |
node_postprocessors=[hybrid_reranker],
|
430 |
response_mode="tree_summarize"
|
431 |
)
|
432 |
+
|
433 |
+
# Create QueryEngineTool
|
434 |
+
from llama_index.core.tools import QueryEngineTool
|
435 |
+
|
436 |
self.query_engine_tool = QueryEngineTool.from_defaults(
|
437 |
query_engine=query_engine,
|
438 |
name="dynamic_hybrid_multimodal_rag_tool",
|
|
|
442 |
"Automatically updated with web search content."
|
443 |
)
|
444 |
)
|
445 |
+
|
446 |
def add_documents(self, new_documents: List[Document]):
|
447 |
"""Add documents from web search and recreate tool."""
|
448 |
self.documents.extend(new_documents)
|
449 |
self._create_rag_tool() # Recreate with ALL documents
|
450 |
print(f"Added {len(new_documents)} documents. Total: {len(self.documents)}")
|
451 |
+
|
452 |
def get_tool(self):
|
453 |
return self.query_engine_tool
|
454 |
+
|
455 |
# Global instance
|
456 |
dynamic_qe_manager = DynamicQueryEngineManager()
|
457 |
|
|
|
466 |
"""
|
467 |
# Get URL from search
|
468 |
search_results = base_duckduckgo_tool(query, max_results=1)
|
469 |
+
url_match = re.search(r"https?://\\S+", str(search_results))
|
470 |
+
|
471 |
if not url_match:
|
472 |
return [Document(text="No URL could be extracted from the search results.")]
|
473 |
+
|
474 |
url = url_match.group(0)[:-2]
|
475 |
print(url)
|
476 |
+
|
477 |
documents = []
|
478 |
+
|
479 |
try:
|
480 |
# Check if it's a YouTube URL
|
481 |
if "youtube" in urlparse(url).netloc or "youtu.be" in urlparse(url).netloc:
|
|
|
484 |
else:
|
485 |
loader = BeautifulSoupWebReader()
|
486 |
documents = loader.load_data(urls=[url])
|
487 |
+
|
488 |
for doc in documents:
|
489 |
doc.metadata["source"] = url
|
490 |
doc.metadata["type"] = "web_text"
|
491 |
+
|
492 |
return documents
|
493 |
except Exception as e:
|
494 |
# Handle any exceptions that occur during content extraction
|
495 |
return [Document(text=f"Error extracting content from URL: {str(e)}")]
|
496 |
+
|
497 |
def enhanced_web_search_and_update(query: str) -> str:
|
498 |
"""
|
499 |
Performs web search, extracts content, and adds it to the dynamic query engine.
|
500 |
"""
|
501 |
# Extract content from web search
|
502 |
documents = search_and_extract_content_from_url(query)
|
503 |
+
|
504 |
# Add documents to the dynamic query engine
|
505 |
if documents and not any("Error" in doc.text for doc in documents):
|
506 |
dynamic_qe_manager.add_documents(documents)
|
507 |
+
|
508 |
# Return summary of what was added
|
509 |
text_docs = [doc for doc in documents if doc.metadata.get("type") == "web_text"]
|
510 |
image_docs = [doc for doc in documents if doc.metadata.get("type") == "web_image"]
|
511 |
+
|
512 |
summary = f"Successfully added web content to knowledge base:\n"
|
513 |
summary += f"- {len(text_docs)} text documents\n"
|
514 |
summary += f"- {len(image_docs)} images\n"
|
515 |
summary += f"Source: {documents[0].metadata.get('source', 'Unknown')}"
|
516 |
+
|
517 |
return summary
|
518 |
else:
|
519 |
error_msg = documents[0].text if documents else "No content extracted"
|
|
|
564 |
# Data science modules (may not be available)
|
565 |
optional_modules = {
|
566 |
"numpy": "numpy",
|
567 |
+
"np": "numpy",
|
568 |
"pandas": "pandas",
|
569 |
"pd": "pandas",
|
570 |
"scipy": "scipy",
|
|
|
601 |
safe_globals["Image"] = image_module
|
602 |
|
603 |
def execute_python_code(code: str) -> str:
|
604 |
+
try:
|
605 |
exec_locals = {}
|
606 |
exec(code, safe_globals, exec_locals)
|
|
|
607 |
if 'result' in exec_locals:
|
608 |
return str(exec_locals['result'])
|
609 |
else:
|
610 |
return "Code executed successfully"
|
|
|
611 |
except Exception as e:
|
612 |
return f"Code execution failed: {str(e)}"
|
613 |
|
|
|
621 |
"""Clean response by removing common prefixes"""
|
622 |
response_clean = response.strip()
|
623 |
prefixes_to_remove = [
|
624 |
+
"FINAL ANSWER:", "Answer:", "The answer is:",
|
625 |
+
"Based on my analysis,", "After reviewing,",
|
626 |
"The result is:", "Final result:", "According to",
|
627 |
"In conclusion,", "Therefore,", "Thus,"
|
628 |
]
|
629 |
+
|
630 |
for prefix in prefixes_to_remove:
|
631 |
if response_clean.startswith(prefix):
|
632 |
response_clean = response_clean[len(prefix):].strip()
|
633 |
+
|
634 |
return response_clean
|
635 |
|
636 |
def llm_reformat(response: str, question: str) -> str:
|
637 |
"""Use LLM to reformat the response according to GAIA requirements"""
|
|
|
638 |
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
|
639 |
|
640 |
GAIA Format Rules:
|
|
|
662 |
Now extract the exact answer:
|
663 |
Question: {question}
|
664 |
Response: {response}
|
665 |
+
|
666 |
Answer:"""
|
667 |
|
668 |
try:
|
669 |
# Use the global LLM instance
|
670 |
formatting_response = proj_llm.complete(format_prompt)
|
671 |
answer = str(formatting_response).strip()
|
672 |
+
|
673 |
# Extract just the answer after "Answer:"
|
674 |
if "Answer:" in answer:
|
675 |
answer = answer.split("Answer:")[-1].strip()
|
676 |
+
|
677 |
return answer
|
678 |
except Exception as e:
|
679 |
print(f"LLM reformatting failed: {e}")
|
|
|
682 |
def final_answer_tool(agent_response: str, question: str) -> str:
|
683 |
"""
|
684 |
Simplified final answer tool using only LLM reformatting.
|
|
|
685 |
Args:
|
686 |
agent_response: The raw response from agent reasoning
|
687 |
question: The original question for context
|
|
|
688 |
Returns:
|
689 |
Exact answer in GAIA format
|
690 |
"""
|
|
|
691 |
# Step 1: Clean the response
|
692 |
cleaned_response = clean_response(agent_response)
|
693 |
+
|
694 |
# Step 2: Use LLM reformatting
|
695 |
formatted_answer = llm_reformat(cleaned_response, question)
|
696 |
+
|
697 |
print(f"Original response cleaned: {cleaned_response[:100]}...")
|
698 |
print(f"LLM formatted answer: {formatted_answer}")
|
|
|
|
|
699 |
|
700 |
+
return formatted_answer
|
701 |
|
702 |
class EnhancedGAIAAgent:
|
703 |
def __init__(self):
|
704 |
print("Initializing Enhanced GAIA Agent...")
|
705 |
+
|
706 |
# Vérification du token HuggingFace
|
707 |
+
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
708 |
if not hf_token:
|
709 |
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work")
|
710 |
+
|
711 |
# Initialize the dynamic query engine manager
|
712 |
self.dynamic_qe_manager = DynamicQueryEngineManager()
|
713 |
+
|
714 |
# Create enhanced agents with dynamic tools
|
715 |
self.external_knowledge_agent = ReActAgent(
|
716 |
+
name="external_knowledge_agent",
|
717 |
description="Advanced information retrieval with dynamic knowledge base",
|
718 |
+
system_prompt="""You are an advanced information specialist with a sophisticated RAG system.
|
719 |
+
Your knowledge base uses hybrid reranking and grows dynamically with each web search and document addition.
|
720 |
+
|
721 |
+
IMPORTANT INSTRUCTIONS FOR YOUR REASONING PROCESS:
|
722 |
+
1. Pay careful attention to ALL details in the user's question.
|
723 |
+
2. Think step by step about what is being asked, breaking down the requirements.
|
724 |
+
3. Identify specific qualifiers (e.g., "studio albums" vs just "albums", "between 2000-2010" vs "all time").
|
725 |
+
4. If searching for information, include ALL important details in your search query.
|
726 |
+
5. Double-check that your final answer addresses the EXACT question asked, not a simplified version.
|
727 |
+
|
728 |
+
For example:
|
729 |
+
- If asked "How many studio albums did Taylor Swift release between 2006-2010?", don't just search for
|
730 |
+
"Taylor Swift albums" - include "studio albums" AND the specific date range in your search.
|
731 |
+
- If asked about "Fortune 500 companies headquartered in California", don't just search for
|
732 |
+
"Fortune 500 companies" - include the location qualifier.
|
733 |
+
|
734 |
+
Always add relevant content to your knowledge base, then query it for answers.""",
|
735 |
tools=[
|
736 |
enhanced_web_search_tool,
|
737 |
self.dynamic_qe_manager.get_tool(),
|
|
|
739 |
],
|
740 |
llm=proj_llm,
|
741 |
max_steps=8,
|
742 |
+
verbose=True
|
743 |
+
)
|
744 |
+
|
745 |
self.code_agent = ReActAgent(
|
746 |
name="code_agent",
|
747 |
description="Handles Python code for calculations and data processing",
|
|
|
749 |
tools=[code_execution_tool],
|
750 |
llm=code_llm,
|
751 |
max_steps=6,
|
752 |
+
verbose=True
|
753 |
+
)
|
754 |
+
|
755 |
# Fixed indentation: coordinator initialization inside __init__
|
756 |
self.coordinator = AgentWorkflow(
|
757 |
agents=[self.external_knowledge_agent, self.code_agent],
|
758 |
root_agent="external_knowledge_agent"
|
759 |
)
|
760 |
+
|
761 |
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
|
762 |
"""Download file associated with task_id"""
|
763 |
try:
|
764 |
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
|
765 |
response.raise_for_status()
|
|
|
766 |
filename = f"task_{task_id}_file"
|
767 |
+
|
768 |
with open(filename, 'wb') as f:
|
769 |
f.write(response.content)
|
770 |
+
|
771 |
return filename
|
772 |
except Exception as e:
|
773 |
print(f"Failed to download file for task {task_id}: {e}")
|
774 |
return None
|
775 |
+
|
776 |
def add_documents_to_knowledge_base(self, file_path: str):
|
777 |
"""Add downloaded GAIA documents to the dynamic knowledge base"""
|
778 |
try:
|
|
|
780 |
if documents:
|
781 |
self.dynamic_qe_manager.add_documents(documents)
|
782 |
print(f"Added {len(documents)} documents from {file_path} to dynamic knowledge base")
|
783 |
+
|
784 |
# Update the agent's tools with the refreshed query engine
|
785 |
self.external_knowledge_agent.tools = [
|
786 |
enhanced_web_search_tool,
|
787 |
self.dynamic_qe_manager.get_tool(), # Get the updated tool
|
788 |
code_execution_tool
|
789 |
]
|
790 |
+
|
791 |
return True
|
792 |
except Exception as e:
|
793 |
print(f"Failed to add documents from {file_path}: {e}")
|
794 |
return False
|
795 |
+
|
796 |
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
|
797 |
"""
|
798 |
Solve GAIA question with dynamic knowledge base integration
|
799 |
"""
|
800 |
question = question_data.get("Question", "")
|
801 |
task_id = question_data.get("task_id", "")
|
802 |
+
|
803 |
# Try to download and add file to knowledge base if task_id provided
|
804 |
file_path = None
|
805 |
if task_id:
|
|
|
811 |
print(f"Successfully integrated GAIA file into dynamic knowledge base")
|
812 |
except Exception as e:
|
813 |
print(f"Failed to download/process file for task {task_id}: {e}")
|
814 |
+
|
815 |
+
# Enhanced context prompt with dynamic knowledge base awareness and step-by-step reasoning
|
816 |
context_prompt = f"""
|
817 |
GAIA Task ID: {task_id}
|
818 |
Question: {question}
|
819 |
{f'File processed and added to knowledge base: {file_path}' if file_path else 'No additional files'}
|
820 |
|
821 |
+
You are a general AI assistant. I will ask you a question.
|
822 |
+
|
823 |
+
IMPORTANT INSTRUCTIONS:
|
824 |
+
1. Think through this STEP BY STEP, carefully analyzing all aspects of the question.
|
825 |
+
2. Pay special attention to specific qualifiers like dates, types, categories, or locations.
|
826 |
+
3. Make sure your searches include ALL important details from the question.
|
827 |
+
4. Report your thoughts and reasoning process clearly.
|
828 |
+
5. Finish your answer with: FINAL ANSWER: [YOUR FINAL ANSWER]
|
829 |
+
|
830 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
831 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
832 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
833 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
|
834 |
+
|
835 |
try:
|
836 |
ctx = Context(self.coordinator)
|
837 |
print("=== AGENT REASONING STEPS ===")
|
838 |
print(f"Dynamic knowledge base contains {len(self.dynamic_qe_manager.documents)} documents")
|
839 |
+
|
840 |
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
|
|
|
841 |
full_response = ""
|
842 |
+
|
843 |
async for event in handler.stream_events():
|
844 |
if isinstance(event, AgentStream):
|
845 |
print(event.delta, end="", flush=True)
|
846 |
full_response += event.delta
|
847 |
+
|
848 |
final_response = await handler
|
849 |
print("\n=== END REASONING ===")
|
850 |
+
|
851 |
# Extract the final formatted answer
|
852 |
+
final_answer = final_answer_tool(str(final_response), question)
|
|
|
853 |
print(f"Final GAIA formatted answer: {final_answer}")
|
854 |
print(f"Knowledge base now contains {len(self.dynamic_qe_manager.documents)} documents")
|
855 |
+
|
856 |
return final_answer
|
|
|
857 |
except Exception as e:
|
858 |
error_msg = f"Error processing question: {str(e)}"
|
859 |
print(error_msg)
|
860 |
return error_msg
|
861 |
+
|
862 |
def get_knowledge_base_stats(self):
|
863 |
"""Get statistics about the current knowledge base"""
|
864 |
return {
|
|
|
866 |
"document_sources": [doc.metadata.get("source", "Unknown") for doc in self.dynamic_qe_manager.documents]
|
867 |
}
|
868 |
|
|
|
|
|
869 |
async def main():
|
870 |
agent = EnhancedGAIAAgent()
|
871 |
+
|
872 |
question_data = {
|
873 |
"Question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.",
|
874 |
"task_id": ""
|
875 |
}
|
876 |
+
|
877 |
print(question_data)
|
878 |
answer = await agent.solve_gaia_question(question_data)
|
879 |
print(f"Answer: {answer}")
|