Orel MAZOR
Commit 2
e5ebf3f
import os
import requests
import base64
from typing import Dict, Any, List
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
from smolagents import CodeAgent, OpenAIServerModel, Tool
from smolagents import PythonInterpreterTool, SpeechToTextTool
# Langfuse observability imports
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry import trace
from langfuse import Langfuse
from smolagents import PythonInterpreterTool, FinalAnswerTool
import requests
from markdownify import markdownify
from requests.exceptions import RequestException
from smolagents import tool
import re
from concurrent.futures import ThreadPoolExecutor, TimeoutError
class WebSearchTool(Tool):
name = "web_search"
description = """Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results."""
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "string"
def __init__(self, max_results=10, **kwargs):
super().__init__()
self.max_results = max_results
try:
from duckduckgo_search import DDGS
except ImportError as e:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
) from e
self.ddgs = DDGS(**kwargs)
def _perform_search(self, query: str):
"""Internal method to perform the actual search."""
return self.ddgs.text(query, max_results=self.max_results)
def forward(self, query: str) -> str:
results = []
# First attempt with timeout
with ThreadPoolExecutor(max_workers=1) as executor:
try:
future = executor.submit(self._perform_search, query)
results = future.result(timeout=30) # 30 second timeout
except TimeoutError:
print("First search attempt timed out after 30 seconds, retrying...")
results = []
# Retry if no results or timeout occurred
if len(results) == 0:
print("Retrying search...")
with ThreadPoolExecutor(max_workers=1) as executor:
try:
future = executor.submit(self._perform_search, query)
results = future.result(timeout=30) # 30 second timeout for retry
except TimeoutError:
raise Exception("Search timed out after 30 seconds on both attempts. Try a different query.")
# Final check for results
if len(results) == 0:
raise Exception("No results found after two attempts! Try a less restrictive/shorter query.")
postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results]
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
@tool
def visit_webpage(url: str) -> str:
"""Visits a webpage at the given URL and returns its content as a markdown string.
Args:
url: The URL of the webpage to visit.
Returns:
The content of the webpage converted to Markdown, or an error message if the request fails.
"""
try:
# Send a GET request to the URL
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Parse the content as HTML with BeautifulSoup
from bs4 import BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Extract text and convert to Markdown
content = soup.get_text(separator="\n", strip=True)
markdown_content = markdownify(content)
# Clean up the markdown content
markdown_content = re.sub(r'\n+', '\n', markdown_content) # Remove excessive newlines
markdown_content = re.sub(r'\s+', ' ', markdown_content) # Remove excessive spaces
markdown_content = markdown_content.strip() # Strip leading/trailing whitespace
return markdown_content
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
class BM25RetrieverTool(Tool):
"""
BM25 retriever tool for document search when text documents are available
"""
name = "bm25_retriever"
description = "Uses BM25 search to retrieve relevant parts of uploaded documents. Use this when the question references an attached file or document."
inputs = {
"query": {
"type": "string",
"description": "The search query to find relevant document sections.",
}
}
output_type = "string"
def __init__(self, docs=None, **kwargs):
super().__init__(**kwargs)
self.docs = docs or []
self.retriever = None
if self.docs:
self.retriever = BM25Retriever.from_documents(self.docs, k=5)
def forward(self, query: str) -> str:
if not self.retriever:
return "No documents loaded for retrieval."
assert isinstance(query, str), "Your search query must be a string"
docs = self.retriever.invoke(query)
return "\nRetrieved documents:\n" + "".join([
f"\n\n===== Document {str(i)} =====\n" + doc.page_content
for i, doc in enumerate(docs)
])
class GAIAAgent:
"""
GAIA agent using smolagents with Gemini 2.0 Flash and Langfuse observability
"""
def __init__(self, user_id: str = None, session_id: str = None):
"""Initialize the agent with Gemini 2.0 Flash, tools, and Langfuse observability"""
# Get API keys
gemini_api_key = os.environ.get("GOOGLE_API_KEY")
if not gemini_api_key:
raise ValueError("GOOGLE_API_KEY environment variable not found")
# Initialize Langfuse observability
self._setup_langfuse_observability()
# Initialize Gemini 2.0 Flash model
self.model = OpenAIServerModel(
model_id="gemini-2.0-flash",
api_base="https://generativelanguage.googleapis.com/v1beta/openai/",
api_key=gemini_api_key,
temperature=0.0,
top_p=1.0,
)
# Store user and session IDs for tracking
self.user_id = user_id or "gaia-user"
self.session_id = session_id or "gaia-session"
# GAIA system prompt from the leaderboard
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
IMPORTANT:
- In the last step of your reasoning, if you think your reasoning is not able to answer the question, answer the question directy with your internal reasoning, without using the BM25 retriever tool or the visit_webpage tool.
- Always use the final_answer tool to return your final answer, even if you think you can answer the question without using the tools.
"""
# Initialize retriever tool (will be updated when documents are loaded)
self.retriever_tool = BM25RetrieverTool()
# Create the agent
self.agent = None
self._create_agent()
# Initialize Langfuse client
self.langfuse = Langfuse()
from langfuse import get_client
self.langfuse = get_client() # ✅ Use get_client() for v3
# Store user and session IDs for tracking
self.user_id = user_id or "gaia-user"
self.session_id = session_id or "gaia-session"
def _setup_langfuse_observability(self):
"""Set up Langfuse observability with OpenTelemetry"""
# Get Langfuse keys from environment variables
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
if not langfuse_public_key or not langfuse_secret_key:
print("Warning: LANGFUSE_PUBLIC_KEY or LANGFUSE_SECRET_KEY not found. Observability will be limited.")
return
# Set up Langfuse environment variables
os.environ["LANGFUSE_HOST"] = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com")
langfuse_auth = base64.b64encode(
f"{langfuse_public_key}:{langfuse_secret_key}".encode()
).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel"
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {langfuse_auth}"
# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
# Set the global default tracer provider
trace.set_tracer_provider(trace_provider)
self.tracer = trace.get_tracer(__name__)
# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
def _create_agent(self):
"""Create the CodeAgent with tools"""
base_tools = [
self.retriever_tool,
visit_webpage,
]
self.agent = CodeAgent(
tools=base_tools + [
WebSearchTool(),
PythonInterpreterTool(),
FinalAnswerTool()],
model=self.model,
description=self.system_prompt,
max_steps=5,
additional_authorized_imports = [
"math", # basic calculations
"statistics", # common numeric helpers
"itertools", # safe functional helpers
"datetime", # date handling
"random", # simple randomness (no os access)
"re", # regular expressions
"json", # serialisation / parsing
] )
def load_documents_from_file(self, file_path: str):
"""Load and process documents from a file for BM25 retrieval"""
try:
# Read file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", ".", " ", ""]
)
# Create documents
chunks = text_splitter.split_text(content)
docs = [Document(page_content=chunk, metadata={"source": file_path})
for chunk in chunks]
# Update retriever tool
self.retriever_tool = BM25RetrieverTool(docs)
# Recreate agent with updated retriever
self._create_agent()
print(f"Loaded {len(docs)} document chunks from {file_path}")
return True
except Exception as e:
print(f"Error loading documents from {file_path}: {e}")
return False
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
"""Download file associated with GAIA task_id"""
try:
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
response.raise_for_status()
filename = f"task_{task_id}_file.txt"
with open(filename, 'wb') as f:
f.write(response.content)
return filename
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
return None
def solve_gaia_question(self, question_data: Dict[str, Any], tags: List[str] = None) -> str:
"""
Solve a GAIA question with full Langfuse observability
"""
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
# Prepare tags for observability
trace_tags = ["gaia-agent", "question-solving"]
if tags:
trace_tags.extend(tags)
if task_id:
trace_tags.append(f"task-{task_id}")
# Use SDK v3 context manager approach
with self.langfuse.start_as_current_span(
name="GAIA-Question-Solving",
input={"question": question, "task_id": task_id},
metadata={
"model": self.model.model_id,
"question_length": len(question),
"has_file": bool(task_id)
}
) as span:
try:
# Set trace attributes using v3 syntax
span.update_trace(
user_id=self.user_id,
session_id=self.session_id,
tags=trace_tags
)
# Download and load file if task_id provided
file_loaded = False
if task_id:
file_path = self.download_gaia_file(task_id)
if file_path:
file_loaded = self.load_documents_from_file(file_path)
print(f"Loaded file for task {task_id}")
# Prepare the prompt
prompt = f"""
Question: {question}
{f'Task ID: {task_id}' if task_id else ''}
{f'File loaded: Yes' if file_loaded else 'File loaded: No'}
"""
print("=== AGENT REASONING ===")
result = self.agent.run(prompt)
print("=== END REASONING ===")
# Update span with result using v3 syntax
span.update(output={"answer": str(result)})
return str(result)
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
# Log error using v3 syntax
span.update(
output={"error": error_msg},
level="ERROR"
)
return error_msg
def evaluate_answer(self, question: str, answer: str, expected_answer: str = None) -> Dict[str, Any]:
"""
Evaluate the agent's answer using LLM-as-a-Judge and optionally compare with expected answer
"""
evaluation_prompt = f"""
Please evaluate the following answer to a question on a scale of 1-5:
Question: {question}
Answer: {answer}
{f'Expected Answer: {expected_answer}' if expected_answer else ''}
Rate the answer on:
1. Accuracy (1-5)
2. Completeness (1-5)
3. Clarity (1-5)
Provide your rating as JSON: {{"accuracy": X, "completeness": Y, "clarity": Z, "overall": W, "reasoning": "explanation"}}
"""
try:
# Use the same model to evaluate
evaluation_result = self.agent.run(evaluation_prompt)
# Try to parse JSON response
import json
scores = json.loads(evaluation_result)
return scores
except json.JSONDecodeError:
# If JSON parsing fails, return a default structure
print("Failed to parse evaluation result as JSON. Returning default scores.")
return {
"accuracy": 0,
"completeness": 0,
"clarity": 0,
"overall": 0,
"reasoning": "Could not parse evaluation result"
}
def add_user_feedback(self, trace_id: str, feedback_score: int, comment: str = None):
"""
Add user feedback to a specific trace
Args:
trace_id: The trace ID to add feedback to
feedback_score: Score from 0-5 (0=very bad, 5=excellent)
comment: Optional comment from user
"""
try:
self.langfuse.score(
trace_id=trace_id,
name="user-feedback",
value=feedback_score,
comment=comment
)
self.langfuse.flush()
print(f"User feedback added: {feedback_score}/5")
except Exception as e:
print(f"Error adding user feedback: {e}")
# Example usage with observability
if __name__ == "__main__":
# Set up environment variables (you need to set these)
# os.environ["GOOGLE_API_KEY"] = "your-gemini-api-key"
# os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..."
# os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..."
# Test the agent with observability
agent = GAIAAgent(
user_id="test-user-123",
session_id="test-session-456"
)
# Example question
question_data = {
"Question": "How many studio albums Mercedes Sosa has published between 2000-2009? Search on the English Wikipedia webpage.",
"task_id": ""
}
# Solve with full observability
answer = agent.solve_gaia_question(
question_data,
tags=["music-question", "discography"]
)
print(f"Answer: {answer}")