Spaces:
Configuration error
Configuration error
import os | |
import requests | |
import base64 | |
from typing import Dict, Any, List | |
from langchain.docstore.document import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.retrievers import BM25Retriever | |
from smolagents import CodeAgent, OpenAIServerModel, tool, Tool | |
from smolagents.vision_web_browser import initialize_driver, save_screenshot, helium_instructions | |
from smolagents.agents import ActionStep | |
from selenium import webdriver | |
from selenium.webdriver.common.by import By | |
from selenium.webdriver.common.keys import Keys | |
import helium | |
from PIL import Image | |
from io import BytesIO | |
from time import sleep | |
from smolagents import PythonInterpreterTool, SpeechToTextTool | |
# Langfuse observability imports | |
from opentelemetry.sdk.trace import TracerProvider | |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor | |
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter | |
from opentelemetry.sdk.trace.export import SimpleSpanProcessor | |
from opentelemetry import trace | |
from opentelemetry.trace import format_trace_id | |
from langfuse import Langfuse | |
class BM25RetrieverTool(Tool): | |
""" | |
BM25 retriever tool for document search when text documents are available | |
""" | |
name = "bm25_retriever" | |
description = "Uses BM25 search to retrieve relevant parts of uploaded documents. Use this when the question references an attached file or document." | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "The search query to find relevant document sections.", | |
} | |
} | |
output_type = "string" | |
def __init__(self, docs=None, **kwargs): | |
super().__init__(**kwargs) | |
self.docs = docs or [] | |
self.retriever = None | |
if self.docs: | |
self.retriever = BM25Retriever.from_documents(self.docs, k=5) | |
def forward(self, query: str) -> str: | |
if not self.retriever: | |
return "No documents loaded for retrieval." | |
assert isinstance(query, str), "Your search query must be a string" | |
docs = self.retriever.invoke(query) | |
return "\nRetrieved documents:\n" + "".join([ | |
f"\n\n===== Document {str(i)} =====\n" + doc.page_content | |
for i, doc in enumerate(docs) | |
]) | |
def search_item_ctrl_f(text: str, nth_result: int = 1) -> str: | |
"""Search for text on the current page via Ctrl + F and jump to the nth occurrence. | |
Args: | |
text: The text string to search for on the webpage | |
nth_result: Which occurrence to jump to (default is 1 for first occurrence) | |
Returns: | |
str: Result of the search operation with match count and navigation status | |
""" | |
try: | |
driver = helium.get_driver() | |
elements = driver.find_elements(By.XPATH, f"//*[contains(text(), '{text}')]") | |
if nth_result > len(elements): | |
return f"Match n°{nth_result} not found (only {len(elements)} matches found)" | |
result = f"Found {len(elements)} matches for '{text}'." | |
elem = elements[nth_result - 1] | |
driver.execute_script("arguments[0].scrollIntoView(true);", elem) | |
result += f"Focused on element {nth_result} of {len(elements)}" | |
return result | |
except Exception as e: | |
return f"Error searching for text: {e}" | |
def go_back() -> str: | |
"""Navigate back to the previous page in browser history. | |
Returns: | |
str: Confirmation message or error description | |
""" | |
try: | |
driver = helium.get_driver() | |
driver.back() | |
return "Navigated back to previous page" | |
except Exception as e: | |
return f"Error going back: {e}" | |
def close_popups() -> str: | |
"""Close any visible modal or pop-up on the page by sending ESC key. | |
Returns: | |
str: Confirmation message or error description | |
""" | |
try: | |
driver = helium.get_driver() | |
webdriver.ActionChains(driver).send_keys(Keys.ESCAPE).perform() | |
return "Attempted to close popups" | |
except Exception as e: | |
return f"Error closing popups: {e}" | |
def scroll_page(direction: str = "down", amount: int = 3) -> str: | |
"""Scroll the webpage in the specified direction. | |
Args: | |
direction: Direction to scroll, either 'up' or 'down' | |
amount: Number of scroll actions to perform | |
Returns: | |
str: Confirmation message or error description | |
""" | |
try: | |
driver = helium.get_driver() | |
for _ in range(amount): | |
if direction.lower() == "down": | |
driver.execute_script("window.scrollBy(0, 300);") | |
elif direction.lower() == "up": | |
driver.execute_script("window.scrollBy(0, -300);") | |
sleep(0.5) | |
return f"Scrolled {direction} {amount} times" | |
except Exception as e: | |
return f"Error scrolling: {e}" | |
def get_page_text() -> str: | |
"""Extract all visible text from the current webpage. | |
Returns: | |
str: The visible text content of the page | |
""" | |
try: | |
driver = helium.get_driver() | |
text = driver.find_element(By.TAG_NAME, "body").text | |
return f"Page text (first 2000 chars): {text[:2000]}" | |
except Exception as e: | |
return f"Error getting page text: {e}" | |
def save_screenshot_callback(memory_step: ActionStep, agent: CodeAgent) -> None: | |
"""Save screenshots for web browser automation""" | |
try: | |
sleep(1.0) | |
driver = helium.get_driver() | |
if driver is not None: | |
# Clean up old screenshots | |
for previous_memory_step in agent.memory.steps: | |
if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= memory_step.step_number - 2: | |
previous_memory_step.observations_images = None | |
png_bytes = driver.get_screenshot_as_png() | |
image = Image.open(BytesIO(png_bytes)) | |
memory_step.observations_images = [image.copy()] | |
# Update observations with current URL | |
url_info = f"Current url: {driver.current_url}" | |
memory_step.observations = ( | |
url_info if memory_step.observations is None | |
else memory_step.observations + "\n" + url_info | |
) | |
except Exception as e: | |
print(f"Error in screenshot callback: {e}") | |
class GAIAAgent: | |
""" | |
GAIA agent using smolagents with Gemini 2.0 Flash and Langfuse observability | |
""" | |
def __init__(self, user_id: str = None, session_id: str = None): | |
"""Initialize the agent with Gemini 2.0 Flash, tools, and Langfuse observability""" | |
# Get API keys | |
gemini_api_key = os.environ.get("GOOGLE_API_KEY") | |
if not gemini_api_key: | |
raise ValueError("GOOGLE_API_KEY environment variable not found") | |
# Initialize Langfuse observability | |
self._setup_langfuse_observability() | |
# Initialize Gemini 2.0 Flash model | |
self.model = OpenAIServerModel( | |
model_id="gemini-2.0-flash", | |
api_base="https://generativelanguage.googleapis.com/v1beta/openai/", | |
api_key=gemini_api_key, | |
) | |
# Store user and session IDs for tracking | |
self.user_id = user_id or "gaia-user" | |
self.session_id = session_id or "gaia-session" | |
# GAIA system prompt from the leaderboard | |
self.system_prompt = """You are a general AI assistant. I will ask you a question. Report your thoughts and reasoning process clearly. You should use the available tools to gather information and solve problems step by step. | |
When using web browser automation: | |
- Use helium commands like go_to(), click(), scroll_down() | |
- Take screenshots to see what's happening | |
- Handle popups and forms appropriately | |
- Be patient with page loading | |
For document retrieval: | |
- Use the BM25 retriever when there are text documents attached | |
- Search with relevant keywords from the question | |
Your final answer should be as few words as possible, a number, or a comma-separated list. Don't use articles, abbreviations, or units unless specified.""" | |
# Initialize retriever tool (will be updated when documents are loaded) | |
self.retriever_tool = BM25RetrieverTool() | |
# Initialize web driver for browser automation | |
self.driver = None | |
# Create the agent | |
self.agent = None | |
self._create_agent() | |
# Initialize Langfuse client | |
self.langfuse = Langfuse() | |
def _setup_langfuse_observability(self): | |
"""Set up Langfuse observability with OpenTelemetry""" | |
# Get Langfuse keys from environment variables | |
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY") | |
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY") | |
if not langfuse_public_key or not langfuse_secret_key: | |
print("Warning: LANGFUSE_PUBLIC_KEY or LANGFUSE_SECRET_KEY not found. Observability will be limited.") | |
return | |
# Set up Langfuse environment variables | |
os.environ["LANGFUSE_HOST"] = os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") | |
langfuse_auth = base64.b64encode( | |
f"{langfuse_public_key}:{langfuse_secret_key}".encode() | |
).decode() | |
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel" | |
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {langfuse_auth}" | |
# Create a TracerProvider for OpenTelemetry | |
trace_provider = TracerProvider() | |
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces | |
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) | |
# Set the global default tracer provider | |
trace.set_tracer_provider(trace_provider) | |
self.tracer = trace.get_tracer(__name__) | |
# Instrument smolagents with the configured provider | |
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) | |
def _create_agent(self): | |
"""Create the CodeAgent with tools""" | |
base_tools = [ | |
self.retriever_tool, | |
search_item_ctrl_f, | |
go_back, | |
close_popups, | |
scroll_page, | |
get_page_text | |
] | |
self.agent = CodeAgent( | |
tools=base_tools + [PythonInterpreterTool(), SpeechToTextTool()], | |
model=self.model, | |
add_base_tools=False, | |
planning_interval=2, | |
additional_authorized_imports=["helium", "requests", "BeautifulSoup", "json"], | |
step_callbacks=[save_screenshot_callback] if self.driver else [], | |
max_steps=10, | |
description=self.system_prompt, | |
verbosity_level=2, | |
) | |
def initialize_browser(self): | |
"""Initialize browser for web automation tasks""" | |
try: | |
chrome_options = webdriver.ChromeOptions() | |
chrome_options.add_argument("--force-device-scale-factor=1") | |
chrome_options.add_argument("--window-size=1000,1350") | |
chrome_options.add_argument("--disable-pdf-viewer") | |
chrome_options.add_argument("--window-position=0,0") | |
chrome_options.add_argument("--no-sandbox") | |
chrome_options.add_argument("--disable-dev-shm-usage") | |
self.driver = helium.start_chrome(headless=False, options=chrome_options) | |
# Recreate agent with browser tools | |
self._create_agent() | |
# Import helium for the agent | |
self.agent.python_executor("from helium import *") | |
return True | |
except Exception as e: | |
print(f"Failed to initialize browser: {e}") | |
return False | |
def load_documents_from_file(self, file_path: str): | |
"""Load and process documents from a file for BM25 retrieval""" | |
try: | |
# Read file content | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
# Split into chunks | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
separators=["\n\n", "\n", ".", " ", ""] | |
) | |
# Create documents | |
chunks = text_splitter.split_text(content) | |
docs = [Document(page_content=chunk, metadata={"source": file_path}) | |
for chunk in chunks] | |
# Update retriever tool | |
self.retriever_tool = BM25RetrieverTool(docs) | |
# Recreate agent with updated retriever | |
self._create_agent() | |
print(f"Loaded {len(docs)} document chunks from {file_path}") | |
return True | |
except Exception as e: | |
print(f"Error loading documents from {file_path}: {e}") | |
return False | |
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: | |
"""Download file associated with GAIA task_id""" | |
try: | |
response = requests.get(f"{api_url}/files/{task_id}", timeout=30) | |
response.raise_for_status() | |
filename = f"task_{task_id}_file.txt" | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return filename | |
except Exception as e: | |
print(f"Failed to download file for task {task_id}: {e}") | |
return None | |
def solve_gaia_question(self, question_data: Dict[str, Any], tags: List[str] = None) -> str: | |
""" | |
Solve a GAIA question with full Langfuse observability | |
""" | |
question = question_data.get("Question", "") | |
task_id = question_data.get("task_id", "") | |
# Prepare tags for observability | |
trace_tags = ["gaia-agent", "question-solving"] | |
if tags: | |
trace_tags.extend(tags) | |
if task_id: | |
trace_tags.append(f"task-{task_id}") | |
# Start Langfuse trace with OpenTelemetry | |
with self.tracer.start_as_current_span("GAIA-Question-Solving") as span: | |
try: | |
# Set span attributes for tracking | |
span.set_attribute("langfuse.user.id", self.user_id) | |
span.set_attribute("langfuse.session.id", self.session_id) | |
span.set_attribute("langfuse.tags", trace_tags) | |
span.set_attribute("gaia.task_id", task_id) | |
span.set_attribute("gaia.question_length", len(question)) | |
# Get trace ID for Langfuse linking | |
current_span = trace.get_current_span() | |
span_context = current_span.get_span_context() | |
trace_id = span_context.trace_id | |
formatted_trace_id = format_trace_id(trace_id) | |
# Create Langfuse trace | |
langfuse_trace = self.langfuse.trace( | |
id=formatted_trace_id, | |
name="GAIA Question Solving", | |
input={"question": question, "task_id": task_id}, | |
user_id=self.user_id, | |
session_id=self.session_id, | |
tags=trace_tags, | |
metadata={ | |
"model": self.model.model_id, | |
"question_length": len(question), | |
"has_file": bool(task_id) | |
} | |
) | |
# Download and load file if task_id provided | |
file_loaded = False | |
if task_id: | |
file_path = self.download_gaia_file(task_id) | |
if file_path: | |
file_loaded = self.load_documents_from_file(file_path) | |
span.set_attribute("gaia.file_loaded", file_loaded) | |
print(f"Loaded file for task {task_id}") | |
# Check if this requires web browsing | |
web_indicators = ["navigate", "browser", "website", "webpage", "url", "click", "search on"] | |
needs_browser = any(indicator in question.lower() for indicator in web_indicators) | |
span.set_attribute("gaia.needs_browser", needs_browser) | |
if needs_browser and not self.driver: | |
print("Initializing browser for web automation...") | |
browser_initialized = self.initialize_browser() | |
span.set_attribute("gaia.browser_initialized", browser_initialized) | |
# Prepare the prompt | |
prompt = f""" | |
Question: {question} | |
{f'Task ID: {task_id}' if task_id else ''} | |
{f'File loaded: Yes' if file_loaded else 'File loaded: No'} | |
Solve this step by step. Use the available tools to gather information and provide a precise answer. | |
""" | |
if needs_browser: | |
prompt += "\n" + helium_instructions | |
print("=== AGENT REASONING ===") | |
result = self.agent.run(prompt) | |
print("=== END REASONING ===") | |
# Update Langfuse trace with result | |
langfuse_trace.update( | |
output={"answer": str(result)}, | |
end_time=None # Will be set automatically | |
) | |
# Add success attributes | |
span.set_attribute("gaia.success", True) | |
span.set_attribute("gaia.answer_length", len(str(result))) | |
# Flush Langfuse data | |
self.langfuse.flush() | |
return str(result) | |
except Exception as e: | |
error_msg = f"Error processing question: {str(e)}" | |
print(error_msg) | |
# Log error to span and Langfuse | |
span.set_attribute("gaia.success", False) | |
span.set_attribute("gaia.error", str(e)) | |
if 'langfuse_trace' in locals(): | |
langfuse_trace.update( | |
output={"error": error_msg}, | |
level="ERROR" | |
) | |
self.langfuse.flush() | |
return error_msg | |
finally: | |
# Clean up browser if initialized | |
if self.driver: | |
try: | |
helium.kill_browser() | |
except: | |
pass | |
def evaluate_answer(self, question: str, answer: str, expected_answer: str = None) -> Dict[str, Any]: | |
""" | |
Evaluate the agent's answer using LLM-as-a-Judge and optionally compare with expected answer | |
""" | |
evaluation_prompt = f""" | |
Please evaluate the following answer to a question on a scale of 1-5: | |
Question: {question} | |
Answer: {answer} | |
{f'Expected Answer: {expected_answer}' if expected_answer else ''} | |
Rate the answer on: | |
1. Accuracy (1-5) | |
2. Completeness (1-5) | |
3. Clarity (1-5) | |
Provide your rating as JSON: {{"accuracy": X, "completeness": Y, "clarity": Z, "overall": W, "reasoning": "explanation"}} | |
""" | |
try: | |
# Use the same model to evaluate | |
evaluation_result = self.agent.run(evaluation_prompt) | |
# Try to parse JSON response | |
import json | |
try: | |
scores = json.loads(evaluation_result) | |
return scores | |
except: | |
# Fallback if JSON parsing fails | |
return { | |
"accuracy": 3, | |
"completeness": 3, | |
"clarity": 3, | |
"overall": 3, | |
"reasoning": "Could not parse evaluation response", | |
"raw_evaluation": evaluation_result | |
} | |
except Exception as e: | |
return { | |
"accuracy": 1, | |
"completeness": 1, | |
"clarity": 1, | |
"overall": 1, | |
"reasoning": f"Evaluation failed: {str(e)}" | |
} | |
def add_user_feedback(self, trace_id: str, feedback_score: int, comment: str = None): | |
""" | |
Add user feedback to a specific trace | |
Args: | |
trace_id: The trace ID to add feedback to | |
feedback_score: Score from 0-5 (0=very bad, 5=excellent) | |
comment: Optional comment from user | |
""" | |
try: | |
self.langfuse.score( | |
trace_id=trace_id, | |
name="user-feedback", | |
value=feedback_score, | |
comment=comment | |
) | |
self.langfuse.flush() | |
print(f"User feedback added: {feedback_score}/5") | |
except Exception as e: | |
print(f"Error adding user feedback: {e}") | |
# Example usage with observability | |
if __name__ == "__main__": | |
# Set up environment variables (you need to set these) | |
# os.environ["GOOGLE_API_KEY"] = "your-gemini-api-key" | |
# os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..." | |
# os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..." | |
# Test the agent with observability | |
agent = GAIAAgent( | |
user_id="test-user-123", | |
session_id="test-session-456" | |
) | |
# Example question | |
question_data = { | |
"Question": "How many studio albums Mercedes Sosa has published between 2000-2009?", | |
"task_id": "" | |
} | |
# Solve with full observability | |
answer = agent.solve_gaia_question( | |
question_data, | |
tags=["music-question", "discography"] | |
) | |
print(f"Answer: {answer}") | |
# Evaluate the answer | |
evaluation = agent.evaluate_answer( | |
question_data["Question"], | |
answer | |
) | |
print(f"Evaluation: {evaluation}") |