File size: 15,904 Bytes
e4bc671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from typing import Optional, List, Any
from pydantic import Field, PrivateAttr
from llama_index.core.llms import CustomLLM, CompletionResponse, CompletionResponseGen, LLMMetadata
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from typing import Any, List, Optional
from llama_index.core.embeddings import BaseEmbedding
from sentence_transformers import SentenceTransformer
from PIL import Image
            
class QwenVL7BCustomLLM(CustomLLM):
    model_name: str = Field(default="Qwen/Qwen2.5-VL-7B-Instruct")
    context_window: int = Field(default=32768)
    num_output: int = Field(default=256)
    _model = PrivateAttr()
    _processor = PrivateAttr()

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
            self.model_name, torch_dtype=torch.bfloat16, device_map='balanced'
        )
        self._processor = AutoProcessor.from_pretrained(self.model_name)

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.num_output,
            model_name=self.model_name,
        )

    @llm_completion_callback()
    def complete(
        self,
        prompt: str,
        image_paths: Optional[List[str]] = None,
        **kwargs: Any
    ) -> CompletionResponse:
        # Prepare multimodal input
        messages = [{"role": "user", "content": []}]
        if image_paths:
            for path in image_paths:
                messages[0]["content"].append({"type": "image", "image": path})
        messages[0]["content"].append({"type": "text", "text": prompt})

        # Tokenize and process
        text = self._processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = self._processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(self._model.device)

        # Generate output
        generated_ids = self._model.generate(**inputs, max_new_tokens=self.num_output)
        generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
        output_text = self._processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )[0]
        return CompletionResponse(text=output_text)

    @llm_completion_callback()
    def stream_complete(
        self,
        prompt: str,
        image_paths: Optional[List[str]] = None,
        **kwargs: Any
    ) -> CompletionResponseGen:
        response = self.complete(prompt, image_paths)
        for token in response.text:
            yield CompletionResponse(text=token, delta=token)

class MultimodalCLIPEmbedding(BaseEmbedding):
    """
    Custom embedding class using CLIP for multimodal capabilities.
    """
    
    def __init__(self, model_name: str = "clip-ViT-B-32", **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self._model = SentenceTransformer(model_name)
        
    @classmethod
    def class_name(cls) -> str:
        return "multimodal_clip"
    
    def _get_query_embedding(self, query: str, image_path: Optional[str] = None) -> List[float]:
        if image_path:
            image = Image.open(image_path)
            embedding = self._model.encode(image)
            return embedding.tolist()
        else:
            embedding = self._model.encode(query)
            return embedding.tolist()
    
    def _get_text_embedding(self, text: str, image_path: Optional[str] = None) -> List[float]:
        if image_path:
            image = Image.open(image_path)
            embedding = self._model.encode(image)
            return embedding.tolist()
        else:
            embedding = self._model.encode(text)
            return embedding.tolist()
    
    def _get_text_embeddings(self, texts: List[str], image_paths: Optional[List[str]] = None) -> List[List[float]]:
        embeddings = []
        image_paths = image_paths or [None] * len(texts)
        
        for text, img_path in zip(texts, image_paths):
            if img_path:
                image = Image.open(img_path)
                emb = self._model.encode(image)
            else:
                emb = self._model.encode(text)
            embeddings.append(emb.tolist())
        
        return embeddings
    
    async def _aget_query_embedding(self, query: str, image_path: Optional[str] = None) -> List[float]:
        return self._get_query_embedding(query, image_path)
    
    async def _aget_text_embedding(self, text: str, image_path: Optional[str] = None) -> List[float]:
        return self._get_text_embedding(text, image_path)
    
# BAAI embedding class
# To run on Terminal before running the app, you need to install the FlagEmbedding package.
# This can be done by cloning the repository and installing it in editable mode.
#!git clone https://github.com/FlagOpen/FlagEmbedding.git
#cd FlagEmbedding/research/visual_bge
#pip install -e .
#go back to the app directory
#cd ../../..



class BaaiMultimodalEmbedding(BaseEmbedding):
    """
    Custom embedding class using BAAI's FlagEmbedding for multimodal capabilities.
    Implements the visual_bge Visualized_BGE model with bge-m3 backend.
    """

    def __init__(self, 
                 model_name_bge: str = "BAAI/bge-m3", 
                 model_weight: str = "Visualized_m3.pth",
                 device: str = "cuda:1",
                 **kwargs: Any) -> None:
        super().__init__(**kwargs)

        # Set device
        self.device = torch.device(device if torch.cuda.is_available() else "cpu")
        print(f"BaaiMultimodalEmbedding initializing on device: {self.device}")

        # Import the visual_bge module
        from visual_bge.modeling import Visualized_BGE
        self._model = Visualized_BGE(
            model_name_bge=model_name_bge, 
            model_weight=model_weight
        )
        self._model.to(self.device)
        self._model.eval()
        print(f"Successfully loaded BAAI Visualized_BGE with {model_name_bge}")

    @classmethod
    def class_name(cls) -> str:
        return "baai_multimodal"

    def _get_query_embedding(self, query: str, image_path: Optional[str] = None) -> List[float]:
        """Get embedding for query with optional image"""
        with torch.no_grad():
            if hasattr(self._model, 'encode') and hasattr(self._model, 'preprocess_val'):
                # Using visual_bge
                if image_path and query:
                    # Combined text and image query
                    embedding = self._model.encode(image=image_path, text=query)
                elif image_path:
                    # Image only
                    embedding = self._model.encode(image=image_path)
                else:
                    # Text only
                    embedding = self._model.encode(text=query)
            else:
                # Fallback to sentence-transformers
                if image_path:
                    from PIL import Image
                    image = Image.open(image_path)
                    embedding = self._model.encode(image)
                else:
                    embedding = self._model.encode(query)

            return embedding.cpu().numpy().tolist() if torch.is_tensor(embedding) else embedding.tolist()

    def _get_text_embedding(self, text: str, image_path: Optional[str] = None) -> List[float]:
        """Get embedding for text with optional image"""
        return self._get_query_embedding(text, image_path)

    def _get_text_embeddings(self, texts: List[str], image_paths: Optional[List[str]] = None) -> List[List[float]]:
        """Get embeddings for multiple texts with optional images"""
        embeddings = []
        image_paths = image_paths or [None] * len(texts)

        for text, img_path in zip(texts, image_paths):
            emb = self._get_text_embedding(text, img_path)
            embeddings.append(emb)
        return embeddings

    async def _aget_query_embedding(self, query: str, image_path: Optional[str] = None) -> List[float]:
        return self._get_query_embedding(query, image_path)

    async def _aget_text_embedding(self, text: str, image_path: Optional[str] = None) -> List[float]:
        return self._get_text_embedding(text, image_path)


class PixtralQuantizedLLM(CustomLLM):
    """
    Pixtral 12B quantized model implementation for Kaggle compatibility.
    Uses float8 quantization for memory efficiency.
    """

    model_name: str = Field(default="mistralai/Pixtral-12B-2409")
    context_window: int = Field(default=128000)
    num_output: int = Field(default=512)
    quantization: str = Field(default="fp8")
    _model = PrivateAttr()
    _processor = PrivateAttr()

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Check if we're in a Kaggle environment or have limited resources
        import psutil
        available_memory = psutil.virtual_memory().available / (1024**3)  # GB

        if available_memory < 20:  # Less than 20GB RAM
            print(f"Limited memory detected ({available_memory:.1f}GB), using quantized version")
            self._load_quantized_model()
        else:
            print("Sufficient memory available, attempting full model load")
            try:
                self._load_full_model()
            except Exception as e:
                print(f"Full model loading failed: {e}, falling back to quantized")
                self._load_quantized_model()

    def _load_quantized_model(self):
        """Load quantized Pixtral model for resource-constrained environments"""
        try:
            # Try to use a pre-quantized version from HuggingFace
            quantized_models = [
                "RedHatAI/pixtral-12b-FP8-dynamic"            ]

            model_loaded = False
            for model_id in quantized_models:
                try:
                    print(f"Attempting to load quantized model: {model_id}")

                    # Standard quantized model loading
                    from transformers import AutoModelForCausalLM, AutoProcessor
                    self._model = AutoModelForCausalLM.from_pretrained(
                        model_id,
                        torch_dtype=torch.float8,
                        device_map="auto",
                        trust_remote_code=True
                    )
                    self._processor = AutoProcessor.from_pretrained(model_id)

                    print(f"Successfully loaded quantized Pixtral: {model_id}")
                    model_loaded = True
                    break

                except Exception as e:
                    print(f"Failed to load {model_id}: {e}")
                    continue

            if not model_loaded:
                print("All quantized models failed, using CPU-only fallback")
                self._load_cpu_fallback()

        except Exception as e:
            print(f"Quantized loading failed: {e}")
            self._load_cpu_fallback()

    def _load_full_model(self):
        """Load full Pixtral model"""
        from transformers import AutoModelForCausalLM, AutoProcessor

        self._model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            trust_remote_code=True
        )
        self._processor = AutoProcessor.from_pretrained(self.model_name)

    def _load_cpu_fallback(self):
        """Fallback to CPU-only inference"""
        try:
            from transformers import AutoModelForCausalLM, AutoProcessor

            self._model = AutoModelForCausalLM.from_pretrained(
                "microsoft/DialoGPT-medium",  # Smaller fallback model
                torch_dtype=torch.float32,
                device_map="cpu"
            )
            self._processor = AutoProcessor.from_pretrained("microsoft/DialoGPT-medium")
            print("Using CPU fallback model (DialoGPT-medium)")

        except Exception as e:
            print(f"CPU fallback failed: {e}")
            # Use a minimal implementation
            self._model = None
            self._processor = None

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.num_output,
            model_name=f"{self.model_name}-{self.quantization}",
        )

    @llm_completion_callback()
    def complete(
        self,
        prompt: str,
        image_paths: Optional[List[str]] = None,
        **kwargs: Any
    ) -> CompletionResponse:

        if self._model is None:
            return CompletionResponse(text="Model not available in current environment")

        try:
            # Prepare multimodal input if images provided
            if image_paths and hasattr(self._processor, 'apply_chat_template'):
                # Handle multimodal input
                messages = [{"role": "user", "content": []}]

                if image_paths:
                    for path in image_paths[:4]:  # Limit to 4 images for memory
                        messages[0]["content"].append({"type": "image", "image": path})

                messages[0]["content"].append({"type": "text", "text": prompt})

                # Process the input
                inputs = self._processor(messages, return_tensors="pt", padding=True)
                inputs = {k: v.to(self._model.device) for k, v in inputs.items()}

                # Generate
                with torch.no_grad():
                    outputs = self._model.generate(
                        **inputs,
                        max_new_tokens=min(self.num_output, 256),  # Limit for memory
                        do_sample=True,
                        temperature=0.7,
                        pad_token_id=self._processor.tokenizer.eos_token_id
                    )

                # Decode response
                response = self._processor.batch_decode(outputs, skip_special_tokens=True)[0]
                # Extract only the new generated part
                if len(messages[0]["content"]) > 0:
                    response = response.split(prompt)[-1].strip()

            else:
                # Text-only fallback
                inputs = self._processor(prompt, return_tensors="pt", padding=True)
                inputs = {k: v.to(self._model.device) for k, v in inputs.items()}

                with torch.no_grad():
                    outputs = self._model.generate(
                        **inputs,
                        max_new_tokens=min(self.num_output, 256),
                        do_sample=True,
                        temperature=0.7,
                        pad_token_id=self._processor.tokenizer.eos_token_id
                    )

                response = self._processor.batch_decode(outputs, skip_special_tokens=True)[0]
                response = response.replace(prompt, "").strip()

            return CompletionResponse(text=response)

        except Exception as e:
            error_msg = f"Generation error: {str(e)}"
            print(error_msg)
            return CompletionResponse(text=error_msg)

    @llm_completion_callback()
    def stream_complete(
        self,
        prompt: str,
        image_paths: Optional[List[str]] = None,
        **kwargs: Any
    ) -> CompletionResponseGen:
        # For quantized models, streaming might not be efficient
        # Return the complete response as a single chunk
        response = self.complete(prompt, image_paths, **kwargs)
        yield response