import streamlit as st import os from openai import OpenAI from anthropic import Anthropic import pdfplumber from io import StringIO from dotenv import load_dotenv import pandas as pd from multi_file_ingestion import load_and_split_resume # Load environment variables load_dotenv(override=True) openai_api_key = os.getenv("OPENAI_API_KEY") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") google_api_key = os.getenv("GOOGLE_API_KEY") groq_api_key = os.getenv("GROQ_API_KEY") deepseek_api_key = os.getenv("DEEPSEEK_API_KEY") openai = OpenAI() # Streamlit UI st.set_page_config(page_title="LLM Resumeโ€“JD Fit", layout="wide") st.title("๐Ÿง  Multi-Model Resumeโ€“JD Match Analyzer") # Inject custom CSS to reduce white space st.markdown(""" """, unsafe_allow_html=True) # File upload resume_file = st.file_uploader("๐Ÿ“„ Upload Resume (any file type)", type=None) jd_file = st.file_uploader("๐Ÿ“ Upload Job Description (any file type)", type=None) # Function to extract text from uploaded files def extract_text(file): if file.name.endswith(".pdf"): with pdfplumber.open(file) as pdf: return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()]) else: return StringIO(file.read().decode("utf-8")).read() def extract_candidate_name(resume_text): prompt = f""" You are an AI assistant specialized in resume analysis. Your task is to get full name of the candidate from the resume. Resume: {resume_text} Respond with only the candidate's full name. """ try: response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are a professional resume evaluator."}, {"role": "user", "content": prompt} ] ) content = response.choices[0].message.content return content.strip() except Exception as e: return "Unknown" # Function to build the prompt for LLMs def build_prompt(resume_text, jd_text): prompt = f""" You are an AI assistant specialized in resume analysis and recruitment. Analyze the given resume and compare it with the job description. Your task is to evaluate how well the resume aligns with the job description. Provide a match percentage between 0 and 100, where 100 indicates a perfect fit. Resume: {resume_text} Job Description: {jd_text} Respond with only the match percentage as an integer. """ return prompt.strip() # Function to get match percentage from OpenAI GPT-4 def get_openai_match(prompt): try: response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are a professional resume evaluator."}, {"role": "user", "content": prompt} ] ) content = response.choices[0].message.content digits = ''.join(filter(str.isdigit, content)) return min(int(digits), 100) if digits else 0 except Exception as e: st.error(f"OpenAI API Error: {e}") return 0 # Function to get match percentage from Anthropic Claude def get_anthropic_match(prompt): try: model_name = "claude-3-7-sonnet-latest" claude = Anthropic() message = claude.messages.create( model=model_name, max_tokens=100, messages=[ {"role": "user", "content": prompt} ] ) content = message.content[0].text digits = ''.join(filter(str.isdigit, content)) return min(int(digits), 100) if digits else 0 except Exception as e: st.error(f"Anthropic API Error: {e}") return 0 # Function to get match percentage from Google Gemini def get_google_match(prompt): try: gemini = OpenAI(api_key=google_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/") model_name = "gemini-2.0-flash" messages = [{"role": "user", "content": prompt}] response = gemini.chat.completions.create(model=model_name, messages=messages) content = response.choices[0].message.content digits = ''.join(filter(str.isdigit, content)) return min(int(digits), 100) if digits else 0 except Exception as e: st.error(f"Google Gemini API Error: {e}") return 0 # Function to get match percentage from Groq def get_groq_match(prompt): try: groq = OpenAI(api_key=groq_api_key, base_url="https://api.groq.com/openai/v1") model_name = "llama-3.3-70b-versatile" messages = [{"role": "user", "content": prompt}] response = groq.chat.completions.create(model=model_name, messages=messages) answer = response.choices[0].message.content digits = ''.join(filter(str.isdigit, answer)) return min(int(digits), 100) if digits else 0 except Exception as e: st.error(f"Groq API Error: {e}") return 0 # Function to get match percentage from DeepSeek def get_deepseek_match(prompt): try: deepseek = OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1") model_name = "deepseek-chat" messages = [{"role": "user", "content": prompt}] response = deepseek.chat.completions.create(model=model_name, messages=messages) answer = response.choices[0].message.content digits = ''.join(filter(str.isdigit, answer)) return min(int(digits), 100) if digits else 0 except Exception as e: st.error(f"DeepSeek API Error: {e}") return 0 # Main action if st.button("๐Ÿ” Analyze Resume Fit"): if resume_file and jd_file: with st.spinner("Analyzing..."): # resume_text = extract_text(resume_file) # jd_text = extract_text(jd_file) os.makedirs("temp_files", exist_ok=True) resume_path = os.path.join("temp_files", resume_file.name) with open(resume_path, "wb") as f: f.write(resume_file.getbuffer()) resume_docs = load_and_split_resume(resume_path) resume_text = "\n".join([doc.page_content for doc in resume_docs]) jd_path = os.path.join("temp_files", jd_file.name) with open(jd_path, "wb") as f: f.write(jd_file.getbuffer()) jd_docs = load_and_split_resume(jd_path) jd_text = "\n".join([doc.page_content for doc in jd_docs]) candidate_name = extract_candidate_name(resume_text) prompt = build_prompt(resume_text, jd_text) # Get match percentages from all models scores = { "OpenAI GPT-4o Mini": get_openai_match(prompt), "Anthropic Claude": get_anthropic_match(prompt), "Google Gemini": get_google_match(prompt), "Groq": get_groq_match(prompt), "DeepSeek": get_deepseek_match(prompt), } # Calculate average score average_score = round(sum(scores.values()) / len(scores), 2) # Sort scores in descending order sorted_scores = sorted(scores.items(), reverse=False) # Display results st.success("โœ… Analysis Complete") st.subheader("๐Ÿ“Š Match Results (Ranked by Model)") # Show candidate name st.markdown(f"**๐Ÿ‘ค Candidate:** {candidate_name}") # Create and sort dataframe df = pd.DataFrame(sorted_scores, columns=["Model", "% Match"]) df = df.sort_values("% Match", ascending=False).reset_index(drop=True) # Convert to HTML table def render_custom_table(dataframe): table_html = "" # Table header table_html += "" for col in dataframe.columns: table_html += f"" table_html += "" # Table rows table_html += "" for _, row in dataframe.iterrows(): table_html += "" for val in row: table_html += f"" table_html += "" table_html += "
{col}
{val}
" return table_html # Display table st.markdown(render_custom_table(df), unsafe_allow_html=True) # Show average match st.metric(label="๐Ÿ“ˆ Average Match %", value=f"{average_score:.2f}%") else: st.warning("Please upload both resume and job description.")