File size: 5,119 Bytes
63c0c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### In this notebook, I’ll use the OpenAI class to connect to the OpenRouter API.\n",
    "#### This way, I can use the OpenAI class just as it’s shown in the course."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's do an import\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from IPython.display import Markdown, display\n",
    "import requests\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Next it's time to load the API keys into environment variables\n",
    "\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check the keys\n",
    "\n",
    "import os\n",
    "openRouter_api_key = os.getenv('OPENROUTER_API_KEY')\n",
    "\n",
    "if openRouter_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openRouter_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Now let's define the model names\n",
    "# The model names are used to specify which model you want to use when making requests to the OpenAI API.\n",
    "Gpt_41_nano = \"openai/gpt-4.1-nano\"\n",
    "Gpt_41_mini = \"openai/gpt-4.1-mini\"\n",
    "Claude_35_haiku = \"anthropic/claude-3.5-haiku\"\n",
    "Claude_37_sonnet = \"anthropic/claude-3.7-sonnet\"\n",
    "#Gemini_25_Pro_Preview = \"google/gemini-2.5-pro-preview\"\n",
    "Gemini_25_Flash_Preview_thinking = \"google/gemini-2.5-flash-preview:thinking\"\n",
    "\n",
    "\n",
    "free_mistral_Small_31_24B = \"mistralai/mistral-small-3.1-24b-instruct:free\"\n",
    "free_deepSeek_V3_Base = \"deepseek/deepseek-v3-base:free\"\n",
    "free_meta_Llama_4_Maverick = \"meta-llama/llama-4-maverick:free\"\n",
    "free_nous_Hermes_3_Mistral_24B = \"nousresearch/deephermes-3-mistral-24b-preview:free\"\n",
    "free_gemini_20_flash_exp = \"google/gemini-2.0-flash-exp:free\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "chatHistory = []\n",
    "# This is a list that will hold the chat history"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chatWithOpenRouter(model:str, prompt:str)-> str:\n",
    "    \"\"\" This function takes a model and a prompt and returns the response\n",
    "    from the OpenRouter API, using the OpenAI class from the openai package.\"\"\"\n",
    "\n",
    "    # here instantiate the OpenAI class but with the OpenRouter\n",
    "    # API URL\n",
    "    llmRequest = OpenAI(\n",
    "        api_key=openRouter_api_key,\n",
    "        base_url=\"https://openrouter.ai/api/v1\"\n",
    "    )\n",
    "\n",
    "    # add the prompt to the chat history\n",
    "    chatHistory.append({\"role\": \"user\", \"content\": prompt})\n",
    "\n",
    "    # make the request to the OpenRouter API\n",
    "    response = llmRequest.chat.completions.create(\n",
    "        model=model,\n",
    "        messages=chatHistory\n",
    "    )\n",
    "\n",
    "    # get the output from the response\n",
    "    assistantResponse = response.choices[0].message.content\n",
    "\n",
    "    # show the answer\n",
    "    display(Markdown(f\"**Assistant:**\\n {assistantResponse}\"))\n",
    "    \n",
    "    # add the assistant response to the chat history\n",
    "    chatHistory.append({\"role\": \"assistant\", \"content\": assistantResponse})\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# message to use with the chatWithOpenRouter function\n",
    "userPrompt = \"Shortly. Difference between git and github. Response in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "chatWithOpenRouter(free_mistral_Small_31_24B, userPrompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#clear chat history\n",
    "def clearChatHistory():\n",
    "    \"\"\" This function clears the chat history\"\"\"\n",
    "    chatHistory.clear()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "UV_Py_3.12",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}