from __future__ import annotations import inspect import json from collections.abc import Awaitable from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Callable, Literal, Union, overload from openai.types.responses.file_search_tool_param import Filters, RankingOptions from openai.types.responses.response_output_item import LocalShellCall, McpApprovalRequest from openai.types.responses.tool_param import CodeInterpreter, ImageGeneration, Mcp from openai.types.responses.web_search_tool_param import UserLocation from pydantic import ValidationError from typing_extensions import Concatenate, NotRequired, ParamSpec, TypedDict from . import _debug from .computer import AsyncComputer, Computer from .exceptions import ModelBehaviorError from .function_schema import DocstringStyle, function_schema from .items import RunItem from .logger import logger from .run_context import RunContextWrapper from .tool_context import ToolContext from .tracing import SpanError from .util import _error_tracing from .util._types import MaybeAwaitable if TYPE_CHECKING: from .agent import Agent ToolParams = ParamSpec("ToolParams") ToolFunctionWithoutContext = Callable[ToolParams, Any] ToolFunctionWithContext = Callable[Concatenate[RunContextWrapper[Any], ToolParams], Any] ToolFunctionWithToolContext = Callable[Concatenate[ToolContext, ToolParams], Any] ToolFunction = Union[ ToolFunctionWithoutContext[ToolParams], ToolFunctionWithContext[ToolParams], ToolFunctionWithToolContext[ToolParams], ] @dataclass class FunctionToolResult: tool: FunctionTool """The tool that was run.""" output: Any """The output of the tool.""" run_item: RunItem """The run item that was produced as a result of the tool call.""" @dataclass class FunctionTool: """A tool that wraps a function. In most cases, you should use the `function_tool` helpers to create a FunctionTool, as they let you easily wrap a Python function. """ name: str """The name of the tool, as shown to the LLM. Generally the name of the function.""" description: str """A description of the tool, as shown to the LLM.""" params_json_schema: dict[str, Any] """The JSON schema for the tool's parameters.""" on_invoke_tool: Callable[[ToolContext[Any], str], Awaitable[Any]] """A function that invokes the tool with the given context and parameters. The params passed are: 1. The tool run context. 2. The arguments from the LLM, as a JSON string. You must return a string representation of the tool output, or something we can call `str()` on. In case of errors, you can either raise an Exception (which will cause the run to fail) or return a string error message (which will be sent back to the LLM). """ strict_json_schema: bool = True """Whether the JSON schema is in strict mode. We **strongly** recommend setting this to True, as it increases the likelihood of correct JSON input.""" is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True """Whether the tool is enabled. Either a bool or a Callable that takes the run context and agent and returns whether the tool is enabled. You can use this to dynamically enable/disable a tool based on your context/state.""" @dataclass class FileSearchTool: """A hosted tool that lets the LLM search through a vector store. Currently only supported with OpenAI models, using the Responses API. """ vector_store_ids: list[str] """The IDs of the vector stores to search.""" max_num_results: int | None = None """The maximum number of results to return.""" include_search_results: bool = False """Whether to include the search results in the output produced by the LLM.""" ranking_options: RankingOptions | None = None """Ranking options for search.""" filters: Filters | None = None """A filter to apply based on file attributes.""" @property def name(self): return "file_search" @dataclass class WebSearchTool: """A hosted tool that lets the LLM search the web. Currently only supported with OpenAI models, using the Responses API. """ user_location: UserLocation | None = None """Optional location for the search. Lets you customize results to be relevant to a location.""" search_context_size: Literal["low", "medium", "high"] = "medium" """The amount of context to use for the search.""" @property def name(self): return "web_search_preview" @dataclass class ComputerTool: """A hosted tool that lets the LLM control a computer.""" computer: Computer | AsyncComputer """The computer implementation, which describes the environment and dimensions of the computer, as well as implements the computer actions like click, screenshot, etc. """ @property def name(self): return "computer_use_preview" @dataclass class MCPToolApprovalRequest: """A request to approve a tool call.""" ctx_wrapper: RunContextWrapper[Any] """The run context.""" data: McpApprovalRequest """The data from the MCP tool approval request.""" class MCPToolApprovalFunctionResult(TypedDict): """The result of an MCP tool approval function.""" approve: bool """Whether to approve the tool call.""" reason: NotRequired[str] """An optional reason, if rejected.""" MCPToolApprovalFunction = Callable[ [MCPToolApprovalRequest], MaybeAwaitable[MCPToolApprovalFunctionResult] ] """A function that approves or rejects a tool call.""" @dataclass class HostedMCPTool: """A tool that allows the LLM to use a remote MCP server. The LLM will automatically list and call tools, without requiring a a round trip back to your code. If you want to run MCP servers locally via stdio, in a VPC or other non-publicly-accessible environment, or you just prefer to run tool calls locally, then you can instead use the servers in `agents.mcp` and pass `Agent(mcp_servers=[...])` to the agent.""" tool_config: Mcp """The MCP tool config, which includes the server URL and other settings.""" on_approval_request: MCPToolApprovalFunction | None = None """An optional function that will be called if approval is requested for an MCP tool. If not provided, you will need to manually add approvals/rejections to the input and call `Runner.run(...)` again.""" @property def name(self): return "hosted_mcp" @dataclass class CodeInterpreterTool: """A tool that allows the LLM to execute code in a sandboxed environment.""" tool_config: CodeInterpreter """The tool config, which includes the container and other settings.""" @property def name(self): return "code_interpreter" @dataclass class ImageGenerationTool: """A tool that allows the LLM to generate images.""" tool_config: ImageGeneration """The tool config, which image generation settings.""" @property def name(self): return "image_generation" @dataclass class LocalShellCommandRequest: """A request to execute a command on a shell.""" ctx_wrapper: RunContextWrapper[Any] """The run context.""" data: LocalShellCall """The data from the local shell tool call.""" LocalShellExecutor = Callable[[LocalShellCommandRequest], MaybeAwaitable[str]] """A function that executes a command on a shell.""" @dataclass class LocalShellTool: """A tool that allows the LLM to execute commands on a shell.""" executor: LocalShellExecutor """A function that executes a command on a shell.""" @property def name(self): return "local_shell" Tool = Union[ FunctionTool, FileSearchTool, WebSearchTool, ComputerTool, HostedMCPTool, LocalShellTool, ImageGenerationTool, CodeInterpreterTool, ] """A tool that can be used in an agent.""" def default_tool_error_function(ctx: RunContextWrapper[Any], error: Exception) -> str: """The default tool error function, which just returns a generic error message.""" return f"An error occurred while running the tool. Please try again. Error: {str(error)}" ToolErrorFunction = Callable[[RunContextWrapper[Any], Exception], MaybeAwaitable[str]] @overload def function_tool( func: ToolFunction[...], *, name_override: str | None = None, description_override: str | None = None, docstring_style: DocstringStyle | None = None, use_docstring_info: bool = True, failure_error_function: ToolErrorFunction | None = None, strict_mode: bool = True, is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True, ) -> FunctionTool: """Overload for usage as @function_tool (no parentheses).""" ... @overload def function_tool( *, name_override: str | None = None, description_override: str | None = None, docstring_style: DocstringStyle | None = None, use_docstring_info: bool = True, failure_error_function: ToolErrorFunction | None = None, strict_mode: bool = True, is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True, ) -> Callable[[ToolFunction[...]], FunctionTool]: """Overload for usage as @function_tool(...).""" ... def function_tool( func: ToolFunction[...] | None = None, *, name_override: str | None = None, description_override: str | None = None, docstring_style: DocstringStyle | None = None, use_docstring_info: bool = True, failure_error_function: ToolErrorFunction | None = default_tool_error_function, strict_mode: bool = True, is_enabled: bool | Callable[[RunContextWrapper[Any], Agent[Any]], MaybeAwaitable[bool]] = True, ) -> FunctionTool | Callable[[ToolFunction[...]], FunctionTool]: """ Decorator to create a FunctionTool from a function. By default, we will: 1. Parse the function signature to create a JSON schema for the tool's parameters. 2. Use the function's docstring to populate the tool's description. 3. Use the function's docstring to populate argument descriptions. The docstring style is detected automatically, but you can override it. If the function takes a `RunContextWrapper` as the first argument, it *must* match the context type of the agent that uses the tool. Args: func: The function to wrap. name_override: If provided, use this name for the tool instead of the function's name. description_override: If provided, use this description for the tool instead of the function's docstring. docstring_style: If provided, use this style for the tool's docstring. If not provided, we will attempt to auto-detect the style. use_docstring_info: If True, use the function's docstring to populate the tool's description and argument descriptions. failure_error_function: If provided, use this function to generate an error message when the tool call fails. The error message is sent to the LLM. If you pass None, then no error message will be sent and instead an Exception will be raised. strict_mode: Whether to enable strict mode for the tool's JSON schema. We *strongly* recommend setting this to True, as it increases the likelihood of correct JSON input. If False, it allows non-strict JSON schemas. For example, if a parameter has a default value, it will be optional, additional properties are allowed, etc. See here for more: https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses#supported-schemas is_enabled: Whether the tool is enabled. Can be a bool or a callable that takes the run context and agent and returns whether the tool is enabled. Disabled tools are hidden from the LLM at runtime. """ def _create_function_tool(the_func: ToolFunction[...]) -> FunctionTool: schema = function_schema( func=the_func, name_override=name_override, description_override=description_override, docstring_style=docstring_style, use_docstring_info=use_docstring_info, strict_json_schema=strict_mode, ) async def _on_invoke_tool_impl(ctx: ToolContext[Any], input: str) -> Any: try: json_data: dict[str, Any] = json.loads(input) if input else {} except Exception as e: if _debug.DONT_LOG_TOOL_DATA: logger.debug(f"Invalid JSON input for tool {schema.name}") else: logger.debug(f"Invalid JSON input for tool {schema.name}: {input}") raise ModelBehaviorError( f"Invalid JSON input for tool {schema.name}: {input}" ) from e if _debug.DONT_LOG_TOOL_DATA: logger.debug(f"Invoking tool {schema.name}") else: logger.debug(f"Invoking tool {schema.name} with input {input}") try: parsed = ( schema.params_pydantic_model(**json_data) if json_data else schema.params_pydantic_model() ) except ValidationError as e: raise ModelBehaviorError(f"Invalid JSON input for tool {schema.name}: {e}") from e args, kwargs_dict = schema.to_call_args(parsed) if not _debug.DONT_LOG_TOOL_DATA: logger.debug(f"Tool call args: {args}, kwargs: {kwargs_dict}") if inspect.iscoroutinefunction(the_func): if schema.takes_context: result = await the_func(ctx, *args, **kwargs_dict) else: result = await the_func(*args, **kwargs_dict) else: if schema.takes_context: result = the_func(ctx, *args, **kwargs_dict) else: result = the_func(*args, **kwargs_dict) if _debug.DONT_LOG_TOOL_DATA: logger.debug(f"Tool {schema.name} completed.") else: logger.debug(f"Tool {schema.name} returned {result}") return result async def _on_invoke_tool(ctx: ToolContext[Any], input: str) -> Any: try: return await _on_invoke_tool_impl(ctx, input) except Exception as e: if failure_error_function is None: raise result = failure_error_function(ctx, e) if inspect.isawaitable(result): return await result _error_tracing.attach_error_to_current_span( SpanError( message="Error running tool (non-fatal)", data={ "tool_name": schema.name, "error": str(e), }, ) ) return result return FunctionTool( name=schema.name, description=schema.description or "", params_json_schema=schema.params_json_schema, on_invoke_tool=_on_invoke_tool, strict_json_schema=strict_mode, is_enabled=is_enabled, ) # If func is actually a callable, we were used as @function_tool with no parentheses if callable(func): return _create_function_tool(func) # Otherwise, we were used as @function_tool(...), so return a decorator def decorator(real_func: ToolFunction[...]) -> FunctionTool: return _create_function_tool(real_func) return decorator