from __future__ import annotations import asyncio import copy from dataclasses import dataclass, field from typing import Any, Generic, cast from openai.types.responses import ResponseCompletedEvent from openai.types.responses.response_prompt_param import ( ResponsePromptParam, ) from typing_extensions import NotRequired, TypedDict, Unpack from ._run_impl import ( AgentToolUseTracker, NextStepFinalOutput, NextStepHandoff, NextStepRunAgain, QueueCompleteSentinel, RunImpl, SingleStepResult, TraceCtxManager, get_model_tracing_impl, ) from .agent import Agent from .agent_output import AgentOutputSchema, AgentOutputSchemaBase from .exceptions import ( AgentsException, InputGuardrailTripwireTriggered, MaxTurnsExceeded, ModelBehaviorError, OutputGuardrailTripwireTriggered, RunErrorDetails, ) from .guardrail import ( InputGuardrail, InputGuardrailResult, OutputGuardrail, OutputGuardrailResult, ) from .handoffs import Handoff, HandoffInputFilter, handoff from .items import ItemHelpers, ModelResponse, RunItem, TResponseInputItem from .lifecycle import RunHooks from .logger import logger from .model_settings import ModelSettings from .models.interface import Model, ModelProvider from .models.multi_provider import MultiProvider from .result import RunResult, RunResultStreaming from .run_context import RunContextWrapper, TContext from .stream_events import AgentUpdatedStreamEvent, RawResponsesStreamEvent from .tool import Tool from .tracing import Span, SpanError, agent_span, get_current_trace, trace from .tracing.span_data import AgentSpanData from .usage import Usage from .util import _coro, _error_tracing DEFAULT_MAX_TURNS = 10 DEFAULT_AGENT_RUNNER: AgentRunner = None # type: ignore # the value is set at the end of the module def set_default_agent_runner(runner: AgentRunner | None) -> None: """ WARNING: this class is experimental and not part of the public API It should not be used directly. """ global DEFAULT_AGENT_RUNNER DEFAULT_AGENT_RUNNER = runner or AgentRunner() def get_default_agent_runner() -> AgentRunner: """ WARNING: this class is experimental and not part of the public API It should not be used directly. """ global DEFAULT_AGENT_RUNNER return DEFAULT_AGENT_RUNNER @dataclass class RunConfig: """Configures settings for the entire agent run.""" model: str | Model | None = None """The model to use for the entire agent run. If set, will override the model set on every agent. The model_provider passed in below must be able to resolve this model name. """ model_provider: ModelProvider = field(default_factory=MultiProvider) """The model provider to use when looking up string model names. Defaults to OpenAI.""" model_settings: ModelSettings | None = None """Configure global model settings. Any non-null values will override the agent-specific model settings. """ handoff_input_filter: HandoffInputFilter | None = None """A global input filter to apply to all handoffs. If `Handoff.input_filter` is set, then that will take precedence. The input filter allows you to edit the inputs that are sent to the new agent. See the documentation in `Handoff.input_filter` for more details. """ input_guardrails: list[InputGuardrail[Any]] | None = None """A list of input guardrails to run on the initial run input.""" output_guardrails: list[OutputGuardrail[Any]] | None = None """A list of output guardrails to run on the final output of the run.""" tracing_disabled: bool = False """Whether tracing is disabled for the agent run. If disabled, we will not trace the agent run. """ trace_include_sensitive_data: bool = True """Whether we include potentially sensitive data (for example: inputs/outputs of tool calls or LLM generations) in traces. If False, we'll still create spans for these events, but the sensitive data will not be included. """ workflow_name: str = "Agent workflow" """The name of the run, used for tracing. Should be a logical name for the run, like "Code generation workflow" or "Customer support agent". """ trace_id: str | None = None """A custom trace ID to use for tracing. If not provided, we will generate a new trace ID.""" group_id: str | None = None """ A grouping identifier to use for tracing, to link multiple traces from the same conversation or process. For example, you might use a chat thread ID. """ trace_metadata: dict[str, Any] | None = None """ An optional dictionary of additional metadata to include with the trace. """ class RunOptions(TypedDict, Generic[TContext]): """Arguments for ``AgentRunner`` methods.""" context: NotRequired[TContext | None] """The context for the run.""" max_turns: NotRequired[int] """The maximum number of turns to run for.""" hooks: NotRequired[RunHooks[TContext] | None] """Lifecycle hooks for the run.""" run_config: NotRequired[RunConfig | None] """Run configuration.""" previous_response_id: NotRequired[str | None] """The ID of the previous response, if any.""" class Runner: @classmethod async def run( cls, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], *, context: TContext | None = None, max_turns: int = DEFAULT_MAX_TURNS, hooks: RunHooks[TContext] | None = None, run_config: RunConfig | None = None, previous_response_id: str | None = None, ) -> RunResult: """Run a workflow starting at the given agent. The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type `agent.output_type`, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop. In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised. Note that only the first agent's input guardrails are run. Args: starting_agent: The starting agent to run. input: The initial input to the agent. You can pass a single string for a user message, or a list of input items. context: The context to run the agent with. max_turns: The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur). hooks: An object that receives callbacks on various lifecycle events. run_config: Global settings for the entire agent run. previous_response_id: The ID of the previous response, if using OpenAI models via the Responses API, this allows you to skip passing in input from the previous turn. Returns: A run result containing all the inputs, guardrail results and the output of the last agent. Agents may perform handoffs, so we don't know the specific type of the output. """ runner = DEFAULT_AGENT_RUNNER return await runner.run( starting_agent, input, context=context, max_turns=max_turns, hooks=hooks, run_config=run_config, previous_response_id=previous_response_id, ) @classmethod def run_sync( cls, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], *, context: TContext | None = None, max_turns: int = DEFAULT_MAX_TURNS, hooks: RunHooks[TContext] | None = None, run_config: RunConfig | None = None, previous_response_id: str | None = None, ) -> RunResult: """Run a workflow synchronously, starting at the given agent. Note that this just wraps the `run` method, so it will not work if there's already an event loop (e.g. inside an async function, or in a Jupyter notebook or async context like FastAPI). For those cases, use the `run` method instead. The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type `agent.output_type`, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop. In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised. Note that only the first agent's input guardrails are run. Args: starting_agent: The starting agent to run. input: The initial input to the agent. You can pass a single string for a user message, or a list of input items. context: The context to run the agent with. max_turns: The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur). hooks: An object that receives callbacks on various lifecycle events. run_config: Global settings for the entire agent run. previous_response_id: The ID of the previous response, if using OpenAI models via the Responses API, this allows you to skip passing in input from the previous turn. Returns: A run result containing all the inputs, guardrail results and the output of the last agent. Agents may perform handoffs, so we don't know the specific type of the output. """ runner = DEFAULT_AGENT_RUNNER return runner.run_sync( starting_agent, input, context=context, max_turns=max_turns, hooks=hooks, run_config=run_config, previous_response_id=previous_response_id, ) @classmethod def run_streamed( cls, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], context: TContext | None = None, max_turns: int = DEFAULT_MAX_TURNS, hooks: RunHooks[TContext] | None = None, run_config: RunConfig | None = None, previous_response_id: str | None = None, ) -> RunResultStreaming: """Run a workflow starting at the given agent in streaming mode. The returned result object contains a method you can use to stream semantic events as they are generated. The agent will run in a loop until a final output is generated. The loop runs like so: 1. The agent is invoked with the given input. 2. If there is a final output (i.e. the agent produces something of type `agent.output_type`, the loop terminates. 3. If there's a handoff, we run the loop again, with the new agent. 4. Else, we run tool calls (if any), and re-run the loop. In two cases, the agent may raise an exception: 1. If the max_turns is exceeded, a MaxTurnsExceeded exception is raised. 2. If a guardrail tripwire is triggered, a GuardrailTripwireTriggered exception is raised. Note that only the first agent's input guardrails are run. Args: starting_agent: The starting agent to run. input: The initial input to the agent. You can pass a single string for a user message, or a list of input items. context: The context to run the agent with. max_turns: The maximum number of turns to run the agent for. A turn is defined as one AI invocation (including any tool calls that might occur). hooks: An object that receives callbacks on various lifecycle events. run_config: Global settings for the entire agent run. previous_response_id: The ID of the previous response, if using OpenAI models via the Responses API, this allows you to skip passing in input from the previous turn. Returns: A result object that contains data about the run, as well as a method to stream events. """ runner = DEFAULT_AGENT_RUNNER return runner.run_streamed( starting_agent, input, context=context, max_turns=max_turns, hooks=hooks, run_config=run_config, previous_response_id=previous_response_id, ) class AgentRunner: """ WARNING: this class is experimental and not part of the public API It should not be used directly or subclassed. """ async def run( self, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], **kwargs: Unpack[RunOptions[TContext]], ) -> RunResult: context = kwargs.get("context") max_turns = kwargs.get("max_turns", DEFAULT_MAX_TURNS) hooks = kwargs.get("hooks") run_config = kwargs.get("run_config") previous_response_id = kwargs.get("previous_response_id") if hooks is None: hooks = RunHooks[Any]() if run_config is None: run_config = RunConfig() tool_use_tracker = AgentToolUseTracker() with TraceCtxManager( workflow_name=run_config.workflow_name, trace_id=run_config.trace_id, group_id=run_config.group_id, metadata=run_config.trace_metadata, disabled=run_config.tracing_disabled, ): current_turn = 0 original_input: str | list[TResponseInputItem] = copy.deepcopy(input) generated_items: list[RunItem] = [] model_responses: list[ModelResponse] = [] context_wrapper: RunContextWrapper[TContext] = RunContextWrapper( context=context, # type: ignore ) input_guardrail_results: list[InputGuardrailResult] = [] current_span: Span[AgentSpanData] | None = None current_agent = starting_agent should_run_agent_start_hooks = True try: while True: all_tools = await AgentRunner._get_all_tools(current_agent, context_wrapper) # Start an agent span if we don't have one. This span is ended if the current # agent changes, or if the agent loop ends. if current_span is None: handoff_names = [ h.agent_name for h in AgentRunner._get_handoffs(current_agent) ] if output_schema := AgentRunner._get_output_schema(current_agent): output_type_name = output_schema.name() else: output_type_name = "str" current_span = agent_span( name=current_agent.name, handoffs=handoff_names, output_type=output_type_name, ) current_span.start(mark_as_current=True) current_span.span_data.tools = [t.name for t in all_tools] current_turn += 1 if current_turn > max_turns: _error_tracing.attach_error_to_span( current_span, SpanError( message="Max turns exceeded", data={"max_turns": max_turns}, ), ) raise MaxTurnsExceeded(f"Max turns ({max_turns}) exceeded") logger.debug( f"Running agent {current_agent.name} (turn {current_turn})", ) if current_turn == 1: input_guardrail_results, turn_result = await asyncio.gather( self._run_input_guardrails( starting_agent, starting_agent.input_guardrails + (run_config.input_guardrails or []), copy.deepcopy(input), context_wrapper, ), self._run_single_turn( agent=current_agent, all_tools=all_tools, original_input=original_input, generated_items=generated_items, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, should_run_agent_start_hooks=should_run_agent_start_hooks, tool_use_tracker=tool_use_tracker, previous_response_id=previous_response_id, ), ) else: turn_result = await self._run_single_turn( agent=current_agent, all_tools=all_tools, original_input=original_input, generated_items=generated_items, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, should_run_agent_start_hooks=should_run_agent_start_hooks, tool_use_tracker=tool_use_tracker, previous_response_id=previous_response_id, ) should_run_agent_start_hooks = False model_responses.append(turn_result.model_response) original_input = turn_result.original_input generated_items = turn_result.generated_items if isinstance(turn_result.next_step, NextStepFinalOutput): output_guardrail_results = await self._run_output_guardrails( current_agent.output_guardrails + (run_config.output_guardrails or []), current_agent, turn_result.next_step.output, context_wrapper, ) return RunResult( input=original_input, new_items=generated_items, raw_responses=model_responses, final_output=turn_result.next_step.output, _last_agent=current_agent, input_guardrail_results=input_guardrail_results, output_guardrail_results=output_guardrail_results, context_wrapper=context_wrapper, ) elif isinstance(turn_result.next_step, NextStepHandoff): current_agent = cast(Agent[TContext], turn_result.next_step.new_agent) current_span.finish(reset_current=True) current_span = None should_run_agent_start_hooks = True elif isinstance(turn_result.next_step, NextStepRunAgain): pass else: raise AgentsException( f"Unknown next step type: {type(turn_result.next_step)}" ) except AgentsException as exc: exc.run_data = RunErrorDetails( input=original_input, new_items=generated_items, raw_responses=model_responses, last_agent=current_agent, context_wrapper=context_wrapper, input_guardrail_results=input_guardrail_results, output_guardrail_results=[], ) raise finally: if current_span: current_span.finish(reset_current=True) def run_sync( self, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], **kwargs: Unpack[RunOptions[TContext]], ) -> RunResult: context = kwargs.get("context") max_turns = kwargs.get("max_turns", DEFAULT_MAX_TURNS) hooks = kwargs.get("hooks") run_config = kwargs.get("run_config") previous_response_id = kwargs.get("previous_response_id") return asyncio.get_event_loop().run_until_complete( self.run( starting_agent, input, context=context, max_turns=max_turns, hooks=hooks, run_config=run_config, previous_response_id=previous_response_id, ) ) def run_streamed( self, starting_agent: Agent[TContext], input: str | list[TResponseInputItem], **kwargs: Unpack[RunOptions[TContext]], ) -> RunResultStreaming: context = kwargs.get("context") max_turns = kwargs.get("max_turns", DEFAULT_MAX_TURNS) hooks = kwargs.get("hooks") run_config = kwargs.get("run_config") previous_response_id = kwargs.get("previous_response_id") if hooks is None: hooks = RunHooks[Any]() if run_config is None: run_config = RunConfig() # If there's already a trace, we don't create a new one. In addition, we can't end the # trace here, because the actual work is done in `stream_events` and this method ends # before that. new_trace = ( None if get_current_trace() else trace( workflow_name=run_config.workflow_name, trace_id=run_config.trace_id, group_id=run_config.group_id, metadata=run_config.trace_metadata, disabled=run_config.tracing_disabled, ) ) output_schema = AgentRunner._get_output_schema(starting_agent) context_wrapper: RunContextWrapper[TContext] = RunContextWrapper( context=context # type: ignore ) streamed_result = RunResultStreaming( input=copy.deepcopy(input), new_items=[], current_agent=starting_agent, raw_responses=[], final_output=None, is_complete=False, current_turn=0, max_turns=max_turns, input_guardrail_results=[], output_guardrail_results=[], _current_agent_output_schema=output_schema, trace=new_trace, context_wrapper=context_wrapper, ) # Kick off the actual agent loop in the background and return the streamed result object. streamed_result._run_impl_task = asyncio.create_task( self._start_streaming( starting_input=input, streamed_result=streamed_result, starting_agent=starting_agent, max_turns=max_turns, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, previous_response_id=previous_response_id, ) ) return streamed_result @classmethod async def _run_input_guardrails_with_queue( cls, agent: Agent[Any], guardrails: list[InputGuardrail[TContext]], input: str | list[TResponseInputItem], context: RunContextWrapper[TContext], streamed_result: RunResultStreaming, parent_span: Span[Any], ): queue = streamed_result._input_guardrail_queue # We'll run the guardrails and push them onto the queue as they complete guardrail_tasks = [ asyncio.create_task( RunImpl.run_single_input_guardrail(agent, guardrail, input, context) ) for guardrail in guardrails ] guardrail_results = [] try: for done in asyncio.as_completed(guardrail_tasks): result = await done if result.output.tripwire_triggered: _error_tracing.attach_error_to_span( parent_span, SpanError( message="Guardrail tripwire triggered", data={ "guardrail": result.guardrail.get_name(), "type": "input_guardrail", }, ), ) queue.put_nowait(result) guardrail_results.append(result) except Exception: for t in guardrail_tasks: t.cancel() raise streamed_result.input_guardrail_results = guardrail_results @classmethod async def _start_streaming( cls, starting_input: str | list[TResponseInputItem], streamed_result: RunResultStreaming, starting_agent: Agent[TContext], max_turns: int, hooks: RunHooks[TContext], context_wrapper: RunContextWrapper[TContext], run_config: RunConfig, previous_response_id: str | None, ): if streamed_result.trace: streamed_result.trace.start(mark_as_current=True) current_span: Span[AgentSpanData] | None = None current_agent = starting_agent current_turn = 0 should_run_agent_start_hooks = True tool_use_tracker = AgentToolUseTracker() streamed_result._event_queue.put_nowait(AgentUpdatedStreamEvent(new_agent=current_agent)) try: while True: if streamed_result.is_complete: break all_tools = await cls._get_all_tools(current_agent, context_wrapper) # Start an agent span if we don't have one. This span is ended if the current # agent changes, or if the agent loop ends. if current_span is None: handoff_names = [h.agent_name for h in cls._get_handoffs(current_agent)] if output_schema := cls._get_output_schema(current_agent): output_type_name = output_schema.name() else: output_type_name = "str" current_span = agent_span( name=current_agent.name, handoffs=handoff_names, output_type=output_type_name, ) current_span.start(mark_as_current=True) tool_names = [t.name for t in all_tools] current_span.span_data.tools = tool_names current_turn += 1 streamed_result.current_turn = current_turn if current_turn > max_turns: _error_tracing.attach_error_to_span( current_span, SpanError( message="Max turns exceeded", data={"max_turns": max_turns}, ), ) streamed_result._event_queue.put_nowait(QueueCompleteSentinel()) break if current_turn == 1: # Run the input guardrails in the background and put the results on the queue streamed_result._input_guardrails_task = asyncio.create_task( cls._run_input_guardrails_with_queue( starting_agent, starting_agent.input_guardrails + (run_config.input_guardrails or []), copy.deepcopy(ItemHelpers.input_to_new_input_list(starting_input)), context_wrapper, streamed_result, current_span, ) ) try: turn_result = await cls._run_single_turn_streamed( streamed_result, current_agent, hooks, context_wrapper, run_config, should_run_agent_start_hooks, tool_use_tracker, all_tools, previous_response_id, ) should_run_agent_start_hooks = False streamed_result.raw_responses = streamed_result.raw_responses + [ turn_result.model_response ] streamed_result.input = turn_result.original_input streamed_result.new_items = turn_result.generated_items if isinstance(turn_result.next_step, NextStepHandoff): current_agent = turn_result.next_step.new_agent current_span.finish(reset_current=True) current_span = None should_run_agent_start_hooks = True streamed_result._event_queue.put_nowait( AgentUpdatedStreamEvent(new_agent=current_agent) ) elif isinstance(turn_result.next_step, NextStepFinalOutput): streamed_result._output_guardrails_task = asyncio.create_task( cls._run_output_guardrails( current_agent.output_guardrails + (run_config.output_guardrails or []), current_agent, turn_result.next_step.output, context_wrapper, ) ) try: output_guardrail_results = await streamed_result._output_guardrails_task except Exception: # Exceptions will be checked in the stream_events loop output_guardrail_results = [] streamed_result.output_guardrail_results = output_guardrail_results streamed_result.final_output = turn_result.next_step.output streamed_result.is_complete = True streamed_result._event_queue.put_nowait(QueueCompleteSentinel()) elif isinstance(turn_result.next_step, NextStepRunAgain): pass except AgentsException as exc: streamed_result.is_complete = True streamed_result._event_queue.put_nowait(QueueCompleteSentinel()) exc.run_data = RunErrorDetails( input=streamed_result.input, new_items=streamed_result.new_items, raw_responses=streamed_result.raw_responses, last_agent=current_agent, context_wrapper=context_wrapper, input_guardrail_results=streamed_result.input_guardrail_results, output_guardrail_results=streamed_result.output_guardrail_results, ) raise except Exception as e: if current_span: _error_tracing.attach_error_to_span( current_span, SpanError( message="Error in agent run", data={"error": str(e)}, ), ) streamed_result.is_complete = True streamed_result._event_queue.put_nowait(QueueCompleteSentinel()) raise streamed_result.is_complete = True finally: if current_span: current_span.finish(reset_current=True) if streamed_result.trace: streamed_result.trace.finish(reset_current=True) @classmethod async def _run_single_turn_streamed( cls, streamed_result: RunResultStreaming, agent: Agent[TContext], hooks: RunHooks[TContext], context_wrapper: RunContextWrapper[TContext], run_config: RunConfig, should_run_agent_start_hooks: bool, tool_use_tracker: AgentToolUseTracker, all_tools: list[Tool], previous_response_id: str | None, ) -> SingleStepResult: if should_run_agent_start_hooks: await asyncio.gather( hooks.on_agent_start(context_wrapper, agent), ( agent.hooks.on_start(context_wrapper, agent) if agent.hooks else _coro.noop_coroutine() ), ) output_schema = cls._get_output_schema(agent) streamed_result.current_agent = agent streamed_result._current_agent_output_schema = output_schema system_prompt, prompt_config = await asyncio.gather( agent.get_system_prompt(context_wrapper), agent.get_prompt(context_wrapper), ) handoffs = cls._get_handoffs(agent) model = cls._get_model(agent, run_config) model_settings = agent.model_settings.resolve(run_config.model_settings) model_settings = RunImpl.maybe_reset_tool_choice(agent, tool_use_tracker, model_settings) final_response: ModelResponse | None = None input = ItemHelpers.input_to_new_input_list(streamed_result.input) input.extend([item.to_input_item() for item in streamed_result.new_items]) # 1. Stream the output events async for event in model.stream_response( system_prompt, input, model_settings, all_tools, output_schema, handoffs, get_model_tracing_impl( run_config.tracing_disabled, run_config.trace_include_sensitive_data ), previous_response_id=previous_response_id, prompt=prompt_config, ): if isinstance(event, ResponseCompletedEvent): usage = ( Usage( requests=1, input_tokens=event.response.usage.input_tokens, output_tokens=event.response.usage.output_tokens, total_tokens=event.response.usage.total_tokens, input_tokens_details=event.response.usage.input_tokens_details, output_tokens_details=event.response.usage.output_tokens_details, ) if event.response.usage else Usage() ) final_response = ModelResponse( output=event.response.output, usage=usage, response_id=event.response.id, ) context_wrapper.usage.add(usage) streamed_result._event_queue.put_nowait(RawResponsesStreamEvent(data=event)) # 2. At this point, the streaming is complete for this turn of the agent loop. if not final_response: raise ModelBehaviorError("Model did not produce a final response!") # 3. Now, we can process the turn as we do in the non-streaming case single_step_result = await cls._get_single_step_result_from_response( agent=agent, original_input=streamed_result.input, pre_step_items=streamed_result.new_items, new_response=final_response, output_schema=output_schema, all_tools=all_tools, handoffs=handoffs, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, tool_use_tracker=tool_use_tracker, ) RunImpl.stream_step_result_to_queue(single_step_result, streamed_result._event_queue) return single_step_result @classmethod async def _run_single_turn( cls, *, agent: Agent[TContext], all_tools: list[Tool], original_input: str | list[TResponseInputItem], generated_items: list[RunItem], hooks: RunHooks[TContext], context_wrapper: RunContextWrapper[TContext], run_config: RunConfig, should_run_agent_start_hooks: bool, tool_use_tracker: AgentToolUseTracker, previous_response_id: str | None, ) -> SingleStepResult: # Ensure we run the hooks before anything else if should_run_agent_start_hooks: await asyncio.gather( hooks.on_agent_start(context_wrapper, agent), ( agent.hooks.on_start(context_wrapper, agent) if agent.hooks else _coro.noop_coroutine() ), ) system_prompt, prompt_config = await asyncio.gather( agent.get_system_prompt(context_wrapper), agent.get_prompt(context_wrapper), ) output_schema = cls._get_output_schema(agent) handoffs = cls._get_handoffs(agent) input = ItemHelpers.input_to_new_input_list(original_input) input.extend([generated_item.to_input_item() for generated_item in generated_items]) new_response = await cls._get_new_response( agent, system_prompt, input, output_schema, all_tools, handoffs, context_wrapper, run_config, tool_use_tracker, previous_response_id, prompt_config, ) return await cls._get_single_step_result_from_response( agent=agent, original_input=original_input, pre_step_items=generated_items, new_response=new_response, output_schema=output_schema, all_tools=all_tools, handoffs=handoffs, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, tool_use_tracker=tool_use_tracker, ) @classmethod async def _get_single_step_result_from_response( cls, *, agent: Agent[TContext], all_tools: list[Tool], original_input: str | list[TResponseInputItem], pre_step_items: list[RunItem], new_response: ModelResponse, output_schema: AgentOutputSchemaBase | None, handoffs: list[Handoff], hooks: RunHooks[TContext], context_wrapper: RunContextWrapper[TContext], run_config: RunConfig, tool_use_tracker: AgentToolUseTracker, ) -> SingleStepResult: processed_response = RunImpl.process_model_response( agent=agent, all_tools=all_tools, response=new_response, output_schema=output_schema, handoffs=handoffs, ) tool_use_tracker.add_tool_use(agent, processed_response.tools_used) return await RunImpl.execute_tools_and_side_effects( agent=agent, original_input=original_input, pre_step_items=pre_step_items, new_response=new_response, processed_response=processed_response, output_schema=output_schema, hooks=hooks, context_wrapper=context_wrapper, run_config=run_config, ) @classmethod async def _run_input_guardrails( cls, agent: Agent[Any], guardrails: list[InputGuardrail[TContext]], input: str | list[TResponseInputItem], context: RunContextWrapper[TContext], ) -> list[InputGuardrailResult]: if not guardrails: return [] guardrail_tasks = [ asyncio.create_task( RunImpl.run_single_input_guardrail(agent, guardrail, input, context) ) for guardrail in guardrails ] guardrail_results = [] for done in asyncio.as_completed(guardrail_tasks): result = await done if result.output.tripwire_triggered: # Cancel all guardrail tasks if a tripwire is triggered. for t in guardrail_tasks: t.cancel() _error_tracing.attach_error_to_current_span( SpanError( message="Guardrail tripwire triggered", data={"guardrail": result.guardrail.get_name()}, ) ) raise InputGuardrailTripwireTriggered(result) else: guardrail_results.append(result) return guardrail_results @classmethod async def _run_output_guardrails( cls, guardrails: list[OutputGuardrail[TContext]], agent: Agent[TContext], agent_output: Any, context: RunContextWrapper[TContext], ) -> list[OutputGuardrailResult]: if not guardrails: return [] guardrail_tasks = [ asyncio.create_task( RunImpl.run_single_output_guardrail(guardrail, agent, agent_output, context) ) for guardrail in guardrails ] guardrail_results = [] for done in asyncio.as_completed(guardrail_tasks): result = await done if result.output.tripwire_triggered: # Cancel all guardrail tasks if a tripwire is triggered. for t in guardrail_tasks: t.cancel() _error_tracing.attach_error_to_current_span( SpanError( message="Guardrail tripwire triggered", data={"guardrail": result.guardrail.get_name()}, ) ) raise OutputGuardrailTripwireTriggered(result) else: guardrail_results.append(result) return guardrail_results @classmethod async def _get_new_response( cls, agent: Agent[TContext], system_prompt: str | None, input: list[TResponseInputItem], output_schema: AgentOutputSchemaBase | None, all_tools: list[Tool], handoffs: list[Handoff], context_wrapper: RunContextWrapper[TContext], run_config: RunConfig, tool_use_tracker: AgentToolUseTracker, previous_response_id: str | None, prompt_config: ResponsePromptParam | None, ) -> ModelResponse: model = cls._get_model(agent, run_config) model_settings = agent.model_settings.resolve(run_config.model_settings) model_settings = RunImpl.maybe_reset_tool_choice(agent, tool_use_tracker, model_settings) new_response = await model.get_response( system_instructions=system_prompt, input=input, model_settings=model_settings, tools=all_tools, output_schema=output_schema, handoffs=handoffs, tracing=get_model_tracing_impl( run_config.tracing_disabled, run_config.trace_include_sensitive_data ), previous_response_id=previous_response_id, prompt=prompt_config, ) context_wrapper.usage.add(new_response.usage) return new_response @classmethod def _get_output_schema(cls, agent: Agent[Any]) -> AgentOutputSchemaBase | None: if agent.output_type is None or agent.output_type is str: return None elif isinstance(agent.output_type, AgentOutputSchemaBase): return agent.output_type return AgentOutputSchema(agent.output_type) @classmethod def _get_handoffs(cls, agent: Agent[Any]) -> list[Handoff]: handoffs = [] for handoff_item in agent.handoffs: if isinstance(handoff_item, Handoff): handoffs.append(handoff_item) elif isinstance(handoff_item, Agent): handoffs.append(handoff(handoff_item)) return handoffs @classmethod async def _get_all_tools( cls, agent: Agent[Any], context_wrapper: RunContextWrapper[Any] ) -> list[Tool]: return await agent.get_all_tools(context_wrapper) @classmethod def _get_model(cls, agent: Agent[Any], run_config: RunConfig) -> Model: if isinstance(run_config.model, Model): return run_config.model elif isinstance(run_config.model, str): return run_config.model_provider.get_model(run_config.model) elif isinstance(agent.model, Model): return agent.model return run_config.model_provider.get_model(agent.model) DEFAULT_AGENT_RUNNER = AgentRunner()